Brooks River in Katmai National Park, Alaska is historically, culturally, and ecologically unique. The river corridor has harbored Alaska Native peoples for thousands of years, is one of the densest archeological sites in Alaska, and remains a place of profound significance for Alutiiq descendants of former Katmai residents. The underlying geology records stories of great volcanic and glacial change. Hundreds of thousands of sockeye salmon annually use the river for migration and spawning. And, during the last 40 years it has become especially famous for its brown bears and wildlife viewing opportunities. There’s no other place like it.
Bear 482 Brett searches for salmon in Brooks River while her two cubs hang on for the ride. July 14, 2021.
Brooks Camp is also experiencing more people than ever before.
In the midst of skyrocketing visitation last year, Katmai National Park implemented a pilot permit program for Brooks River. The permit system didn’t change wildlife distance regulations at Brooks River or limit the overall number of people who could visit. Instead, it applied only to those who wish to physically enter the river or its banks outside of the designated trails, roadways, bridge, and platforms. No one needed to reserve a permit unless they planned to enter the river or walk off trail along the riverbanks (two activities that I suggest should be avoided to give bears the space they need).
The pilot program appeared to be successful. It provided National Park Service (NPS) staff with an additional opportunity to communicate the special circumstances, rules, and responsibilities that apply to Brooks River. The NPS could revoke the permit in instances where permit holders did not adhere to wildlife distance or fishing regulations, which effectively prohibited the person(s) from reentering the river. It allowed approved Brooks River Guides to continue to give their clients the mandatory bear-safety orientations. And finally, it did not restrict or interfere with subsistence fishing associated with the traditional redfish harvest.
Now, the NPS is looking for public comments about the permit system. If you have the time and care about the bears who make the river their summer home, then please support the plan with a comment on or before April 28. As the Katmai Conservancy suggests, say yes to the permit and ask the NPS to limit the number of permits on a daily or weekly basis.
Why are permits necessary? The relative ease and accessibility of the bear-viewing experience at Brooks Camp has attracted increasing numbers of people. More than 16,000 people visited in 2022—an all time record high—and almost double the visitation of 2008. Brooks River is a mere 1.5 miles (2.6 km) long, yet dozens of brown bears use it during the salmon migration and spawning seasons of summer and early fall.
People who enter in the river directly occupy the habitat that bears need to fish for salmon. Numerous scientific studies (reviewed here) have documented that human recreation can displace bears in time and space. The presence of people can cause bears to switch from diurnal to crepuscular activities in response to bear-viewing, angling, hiking, and camping. Bears decrease in number and are present for shorter time spans when exposed to people, angling, and bear-viewing. Bears also spend less time fishing and have less fishing success when anglers and bear-viewers are present.
Bears gather at Brooks River to fish for salmon. People in Brooks River risk displacing bears from important foraging areas in the river. This is especially true for bears who do not habituate to our presence. In these situations, we unwittingly become a competitor in the bear’s mind for space, and most of the time that bear won’t challenge us for it.
Studies specific to Katmai National Park have found that the presence of people can affect when bears fish (Olson et al. 1998) and cause bears to avoid or alter their use of foraging areas (Rode et al. 2007; Smith 2002; Turner and Hamon 2016). Therefore, even a small number of well-behaved and well-intentioned people in the wrong place (like in the river) can have a disproportionately negative effect on brown bears. Disturbance of wildlife can also result in decreased visitor satisfaction (Skibins et al. 2012) and create user conflicts between visitors who are recreating in different ways (bear watching from the platforms or online via webcams vs fishing or photographing bears in the river).
Importantly, and tucked away in the park’s newsletter about the permits, is this: “There is no limit established to the number of permits issued during the permit-required time frame currently, but this will be considered if public feedback to the plan supports a limitation or if conditions change within the Brooks River Corridor to warrant a limitation.” Therefore, I recommend that comments ask the NPS to go beyond merely requiring permits. Comments about the permits should encourage the NPS to establish limits to permits on a daily or weekly basis and perhaps even greater seasonal closures to Brooks River to adequately protect habitat for bears.
I didn’t visit Brooks River in person last year, but rangers and some people I know who had traveled there reported to me that the pilot permit system worked well. While it does not address over-crowding and congestion issues at Brooks Camp caused by record-high levels of visitation, it is certainly a big step in the right direction to ensure the river’s bears have access to the habitat they need to survive. None of the existing regulations would change at Brooks Camp. The permits only make it easier for the NPS to enforce them. But permits alone are not enough. Existing protections for bears can be made more effective if permits were limited in availability. Our national parks, and indeed Brooks Camp, cannot support unlimited numbers of people. The Brooks River corridor is a small area overall. It has limited space for bears and a limited carrying capacity for a high-quality bear-viewing or fishing experiences. Please let the NPS know you support their efforts to protect habitat for bears in the river through the permit system and that the number of permits should be limited on a daily or weekly basis when bears are actively fishing in the river.
Last summer, explore.org celebrated the 10th anniversary of the bear cams at Brooks River in Katmai National Park. These webcams offer an in-depth look at the behavior and ecology of a population of brown bears, allow us to observe the same individual bears over many years–giving us the chance to learn about their personalities and habits–and provide a platform for rangers and other experts to host live programs and commentary about the bears and their stories. It’s a wildlife watching experience like no other.
As part of the celebration, I chose to highlight some the moments that I thought were most memorable from the last ten years of bear cam. Some explore point-in-time events. Others celebrate the behavior of individual bears who have left their mark on Brooks River in ways we can’t forget or ignore. Each was unforgettable from my perspective. I hope you enjoy them.
Most Defensive Mother: 128 Grazer
Grazer is an archetypal mother bear. Don’t get in her way and don’t approach her cubs.
Lefty Learns to Fish at Brooks Falls
Old bears can definitely learn new tricks. In July 2015, we watched a fully mature adult male brown bear figure out how to fish where he’d never fished before.
Otis Eats 42 Salmon in a Sitting
Be awed by the capacity of his stomach.
Death of 451’s Spring Cub
When a bear cub falls ill the world will watch.
503’s Saga
A lone yearling finds a new family.
Reign of 856
Few bears will ever experience the prolonged dominance and advantage earned by 856.
2020 Salmon Smorgasbord
What happens when bears have access to unlimited salmon? The 2020 salmon run gave us the answer.
History of Fat Bear Week
A goofy idea becomes a world famous internet sensation.
We are Family: 909, 910, and Cubs
Sister bears reunite while raising cubs to create an extended family.
If that’s not enough, the bear cam community complied links to all of our bear cam live events from 2022. Two stand out in my mind: 1. The impromptu Q&A about a fight between and mother bear and a dominant male, and 2. The bear cam 10th anniversary live chat.
We’ve seen a lot of special moments on the cams during the last ten summers–perhaps too many to recall–so these are only a small snippet of the larger story. What are your most memorable moments from the bear cams?
As is tradition—going way back to the before times (2017)—I’ve endorsed a bear for Fat Bear Week. This year’s bracket might be difficult to predict, but with voting commencing today at 12 p.m. Eastern and continuing through October 11, it’s time to throw my weight behind a Fat Bear Week contender.
I’d let him speak for himself but his mouth is usually too full of salmon.
Friends, humans, and ursids, let us stand in awe of a true competitor. A candidate with conviction. A candidate with strength. A candidate that stands up for what he believes. A candidate the size of a double-wide refrigerator. This Fat Bear Week vote for the mighty 747.
747 returns to Brooks River every summer as a giant and just keeps getting bigger.
Perhaps you don’t want to listen to me. After all, I’ve endorsed 747 before and it hasn’t usually led to his victory. Our culture is celebrity obsessed, though, so maybe you’ll listen the expert opinions of these randos.
Homer remarked that 747 is the only other individual whose blubber flies like his.
Dr. Evil threatened world destruction if 747 fails to win.
I spoke with the President too, believe it or not. (He seems to clear his schedule when you have something to say about Fat Bear Week.) Joe Biden noted that 747 grew proportionally faster than this year’s inflation rate.
747’s summer was one of competition and success. In June and July, he yielded space to bear 856. By August, however, 747 turned the tables. He frequently challenged and displaced his long-time rival.
It’s hard work staying dominant and getting fat too. Bears as large as 747 tend to overheat easily, and while their limb bones are built to support their great mass sometimes climbing those hills is a struggle.
Name another bear who struggles uphill with such finesse. Here's a full minute of 747 riding a leisurely struggle bus. pic.twitter.com/mUoM4JxbbK
You also can’t get that fat without eating a lot of food, and 747 excels in this life goal. Although we don’t know exactly how many fish 747 ate this year, a study about brown bears on Kodiak Island may provide some insight.
Brown bears shed their fur once per year in early to mid summer. Since new fur grows during a bear’s active season, it contains a record of what the bear ate during that time. Studies of captive bears had previously determined the relationship between the mercury content in food and the mercury content in hair. To apply this to bears on Kodiak, researchers first determined how much mercury is found in the Pacific salmon that spawn on Kodiak. They then analyzed the mercury content found in the bears’ hair to gain an estimate of salmon consumption. Large adult males, on average, ate 6,146 pounds (2,788 kg) per bear per year! Some adult males ate a lot more, though, as much as 10,000 pounds of salmon. Since 747 fished at Brooks Falls almost every day between late June and mid September this summer, then his total salmon consumption may likely have been near the upper end of that spectrum.
For fisheries managers and biologists, these statistics are more than pieces of trivia. They are necessary to help inform decisions about salmon escapement goals, so that salmon runs are sustainable for people and the wildlife who depend on them. The aforementioned Kodiak study found that “the estimated population of 2,300 subadult and adult bears [on Kodiak] consumed 3.77 million kg of salmon annually, a mass equal to ~6 percent of the combined escapement and commercial [salmon] harvest (57.6 million kg).” Katmai National Park’s bear population is about as large as Kodiak’s, and when we work to sustain salmon runs we’re also celebrating the life they provide to many other species and individuals, such as bear 747.
Bears get fat to survive winter hibernation, and Katmai National Park’s Fat Bear Week bears are well positioned to weather the oncoming famine. But there’s candidate who eclipses the rest. Your bear might be a 10 but 747 is 1,400 pounds. I’m voting for 747, are you?
Download your bracket from FatBearWeek.org and go there to vote in each Fat Bear Week match from October 5 to 11.
THE THING ABOUT BEARS IS THAT A LOT OF THEM ARE BIG. BUT LIKE HAVE YOU SEEN 747?? HE’S SO BIG. A GIANT, REALLY. HE JUST SITS THERE AND FISHES LIKE THERE’S NO TOMORROW. I MEAN HE HARDLY LEFT THE FALLS ALL SUMMER. DOESN’T MATTER HOW COLD THE WATER IS OR WHICH OTHER BEARS ARE THERE….
Brooks Falls is, without question, the most famous place in Katmai National Park and one of the most famous wildlife-watching destinations in North America. Even if you can’t place it on a map, you’ve likely seen it in a wildlife film, in a photograph, or on TV. Search “bear catching salmon,” for example, and nearly all of the first 50 photos are of a bear standing on the lip of Brooks Falls.
On a sunny, warm morning in mid July 2021, I arrive at the boardwalk leading to the falls after hiking the short trail through the surrounding spruce forest. It’s a promising time to visit. The early summer sockeye salmon migration is in full swing and hungry bears are eager to catch them. But about halfway along the boardwalk, I realize the chances of reaching the falls in a timely manner are slim. At a covered platform nicknamed the Treehouse, where the boardwalk forks and leads to different viewpoints of the river, there’s a wall of people.
Under the Treehouse roof, about 25 people surround a frazzled park ranger who clutches a metal clipboard. The clipboard and the scribble of names he places on it are the ranger’s only lifeline to a semblance of order—it’s the waitlist for the groups wanting to gain access to the platform overlooking the falls. Like a restaurant maître d’, the ranger greets new arrivals, take their names, and asks others to wait their turn when people fill the Falls platform to its 40-person capacity. He also imposes a one-hour time limit for people at the Falls so that those who are waiting have a chance to go there.
Few people normally hang out at the Treehouse voluntarily, since if offers no lines of sight to the river and its bears. Therefore, the crowd at the Treehouse this morning indicates that the wait time to access the falls is substantial. Having staffed the platforms as a ranger in the past, I don’t wish to add to this ranger’s workload or anyone’s wait time this morning. Instead, I look for space at the adjacent Riffles Platform where rangers don’t manage a specific capacity.
I don’t find much space there either. About 20 people occupy it already. Even more fill in gaps within a few minutes of my arrival as the queue for the Falls platform grows larger. With 40 people at the falls, 25 in the treehouse, 30 or more at the nearby Riffles platform, and surely more to come, I leave for a a less crowded space.
The lower fourth of Brooks River meanders through seasonally flooded marshes and gravel bars before spilling into the glacially-fed and turquoise-colored Naknek Lake, the largest lake wholly contained within any U.S. national park. The lower river offers space and safety for mother bears and their cubs who choose to avoid the risks posed by the larger males fishing at the falls. Young, recently weaned bears also use the area as a place to socialize and graze on tender grass with less risk of encountering a larger, more dominant competitor. It’s also the most ecologically diverse place along the river so even if there are no bears in sight, there’s usually something to catch your eye.
About 20 minutes after leaving the falls boardwalk I arrive at the lower river and station myself on a platform adjacent to the long footbridge that leads to Brooks Lodge and the park visitor center. The perch allows me to see most of the river mouth as well as the meandering reverse S-curve upstream. Few bears use the lower river as I sit, although the vicinity remains filled with activity. A near continuous high-decibel, high-pitched whine fills the air as float planes arrive and taxi to the lakeshore. They disgorge their passengers out of my line of sight, but each plane must’ve been filled to capacity. Over the next hour, I count more than 200 people crossing the bridge toward the falls. Almost none walk in the opposite direction. I sympathize mentally with the Treehouse ranger who is likely clutching his clipboard even more tightly.
Later in the day, another ranger reports to me that the wait to reach the Falls platform exceeded two hours at its peak. In total more than 350 people arrived at Brooks Camp this day, which doesn’t seem like much, but that’s on top of the pilots and guides who brought people here, the 30 people who stayed in the campground, the 50-60 people who stayed in the lodge, the 30 concession employees, and the 20 park staff. Even with my conservative math, about 500 people occupied Brooks Camp, all attempting to share a 1.5 mile-long river corridor with two to three dozen brown bears.
By the end of summer 2021 more than 15,000 people visited Brooks Camp—most of whom arrived in July and all of whom used infrastructure largely designed in the 1980s and 1990s to accommodate about half to two-thirds as much at most. It’s double the visitation of 2007, the first year I worked as a ranger at Brooks Camp.
The popularity of national parks is a welcome sign that these spaces are important and meaningful to broad swaths of the public. It wasn’t that long ago, that a National Park Service director wondered aloud whether parks were losing their relevancy. However, at the same time that our national parks experience record high visitation many more people encounter significant barriers that inhibit them from experiencing these places. I might’ve been sharing Brooks River with 500 people that day last July, but millions more are denied the opportunity. In an era of great crowding in our national parks, I wonder, do we have the determination to make parks accessible to everyone?
⚠️Wednesday, Mar. 23 9:20am: The park is currently full, and we are temporarily delaying entries into the park. Vehicles attempting to enter the park should return in 3-5 hours.
Consider visiting nearby attractions. Check this account for updates before returning.
The first national parks in the United States were protected for their scenic splendor, unique features, and wildlife. Nothing compares to Yellowstone’s geyser basins, Yosemite’s towering granitic cliffs, or Sequoia’s majestic trees. However, broad public support for these areas in the late 1800s was lacking. Yellowstone, Sequoia, Yosemite and Mount Rainier—the first four national parks created by Congress—were remote and difficult to access. Upon their establishment, they lacked the facilities and basic infrastructure necessary to accommodate large numbers of people. Even so, the park boosters, advocates, and visitors who had experienced these landscapes understood they were special places.
To build a constituency for parks and facilitate a national park experience for more people, the earliest park managers built roads, trails, campgrounds, and visitor centers. They hired rangers. They allowed concessioners to build and operate hotels, lodges, restaurants, and trinket shops. After Congress established the National Park Service (NPS) in 1916, the fledging agency doubled down on infrastructure development. During the Great Depression, the Civilian Conservation Corps and Works Progress Administration constructed hundreds, perhaps thousands, of miles of trails and roads within park boundaries. Soon after, a post-WWII travel boom highlighted a need to modernize parks and accommodate a tsunami of people (visitation to all national parks combined increased from about 3.5 million to almost 30 million between 1931 and 1948). The effort was sanctioned by Congress in 1956 through the Mission 66 program, a 10-year-long and billion-dollar plan to expand and modernize facilities and infrastructure in national parks.
Making parks physically accessible to greater numbers of travelers established the experiential paradigm that national parks function within today. Namely, a physical visit to a park inspires people and leads them to become park stewards and supporters.
The effort, it can be convincingly argued, worked. More people visited. More people had great experiences. More people cared for parks. It helped fuel a burgeoning environmental awareness and protection movement. The paradigm, it seemed, had created more stewards than ever before. But not everyone was pleased with the trajectory of tourism in national parks.
In Desert Solitaire, one of Ed Abbey’s most well known essays is “Polemic: Industrial Tourism and National Parks.” Much of the book and “Polemic,” especially, is based on Abbey’s experience working as a ranger at then Arches National Monument in the 1950s, a time before pavement bisected the little visited park in southeast Utah.
Abbey seemed to enjoy his job. He muses something that probably every ranger, including me, has thought at one time or another: “On the rare occasions when I peer into the future more than a few days I can foresee myself returning here for season after season, year after year, indefinitely. What better sinecure could a man with small needs, infinite desires, and philosophic pretensions ask for?”
But, as Abbey saw it, not all was rosy at Arches. He writes, “For there is a cloud on my horizon. A small dark cloud no bigger than my hand. Its name is Progress.” Under the direction of the National Park Service, Arches soon transitioned from an off-the-beaten-path retreat to a major tourist destination.
Abbey experienced Arches as the NPS implemented its Mission 66 plan. He worried and warned that national parks were threatened by “industrial tourism” whose “chief victims of the system are the motorized tourists. They are being robbed and robbing themselves. So long as they are unwilling to crawl out of their cars they will not discover the treasures of the national parks.”
Abbey’s “Polemic,” true to the title word’s meaning, is a scathing criticism of development in national parks and the NPS’s efforts to expand it. “Where once a few adventurous people came on weekends to camp for a night or two and enjoy a taste of the primitive and remote, you will now find serpentine streams of baroque automobiles pouring in and out, all through the spring and summer, in numbers that would have seemed fantastic when I worked there: from 3,000 to 30,000 to 300,000 per year.” *
*Abbey might have exaggerated the numbers here, although visitation did increase substantially between the time Abbey last worked at Arches in 1957 when, according to National Park Service statistics, annual visitation was 25,400 to 135,000 visitors in 1968 when Desert Solitaire was published. In 2021, visitation exceeded 1.7 million.*
Abbey outlined several ways to alleviate crowding and further development such as an end to road building in parks, putting more rangers into the field, and banning cars from parks. “No more cars in national parks. Let the people walk,” he writes. “The automotive combine has almost succeeded in strangling our cities; we need not let it also destroy our national parks.”
If Abbey was angry then, he might feel a rage today. More than 297 million people visited national parks in 2021during a pandemic. More than 327 million people visited national park areas in 2019. Record high visitation stresses the already expansive and often underfunded infrastructure of parks. Parking lots are consistently full; excess cars line the road or their drivers shove their vehicles onto narrow shoulders. Some areas, such as Acadia’s Cadillac Mountain that you need a permit to get in the park parking lot. Herds of us overwhelm trails and overlooks too. Climbing Yosemite’s Half Dome requires a permit awarded through lottery as does Zion’s Angels Landing. You now need a “timed entry permit” to enter Rocky Mountain National Park and drive Glacier National Park’s iconic Going-to-the-Sun Road. Remote hiking areas, where Abbey’s preferred visitors go, are often filled too. When I worked as a backcountry ranger at North Cascades in summer 2017, most every backcountry campsite filled during summer weekends. The overflow spilled into the surrounding national forests, public lands with significantly fewer rangers than national parks.
Clearly, the industry of tourism has grown substantially during the last several decades. Although the pros and cons of this reality is not something I wish to tackle in this essay, our national parks are at a tipping point beyond which I worry the experience of visiting them as well as its wildlife, plants, and scenery will suffer. While I support rethinking how we use cars in national parks and we certainly should not be building new roads, denigrating those who experience parks by car is not the answer. I now see Abbey’s objections to visiting parks by car as ableist.
As an aside, I should note how far my thinking has evolved on this issue. Staring my career twenty years ago, I agreed with Abbey’s no-cars-in-parks stance. Cars are a menace, I thought. (And to be honest, that remains true in many ways. Automobiles kill tens of thousands of people and hundreds of millions of vertebrate animals in the U.S. each year. Transportation also accounts for about 30% of the United States’ greenhouse gas emissions. Driving less would do our world a lot of good.)
Fresh out of college and equipped with good health, I privately sneered at those who drove through parks without riding a bicycle or spending time on the trail. Like Abbey, I wondered, are you really having valid national park experience if you don’t risk hypothermia or sunburn? Yet, most of the time I drove into parks, parked my car and then rode my bike or hiked. I was, hypocritically, dependent on the car and, more importantly, I didn’t consider that the experience of those visiting parks primarily by car as equally valid an experience as my own. Of equal or perhaps even more concern was my rejection of the needs of people who couldn’t visit. “Oh, you can’t come,” I thought, “That sucks but what am I supposed to do about it?” Nature deficit disorder is real, but let’s not pretend that experiencing a national park by car is a cause. There are other much more systemic issues at heart.
When we’ve traditionally explored how to address crowding in national parks, most of the ideas, especially those that have emerged out of the NPS bureaucracy, center around encouraging people to visit less crowded parks, to use shuttles where available like at Zion and Acadia, to visit during less crowded times and seasons, and to encourage people to do more planning or plan like like ranger. Comparatively little thought has been given toward efforts designed to connect parks with people who experience barriers that hinder them from visiting.
With these barriers in place, focusing primarily on congestion in parks is like rearranging chairs in a crowded room, while ignoring everyone that can’t even get in the building.
No panacea exists to solve accessibility issues in our parks. And, thankfully, a growing number of organizations are working toward solutions such as Brown People Camping, Disabled Hikers, Latino Outdoors, National Ability Center, Outdoor Afro, Unlikely Hikers, and Wilderness Inquiry to name a few. There’s one way, however, that the NPS can break the prevailing paradigm almost immediately to provide people from all backgrounds with meaningful national park experiences, and with little more than an internet connection, which brings me back to Katmai.
While at Brooks River, I don’t share the river with only the few hundred people on the ground with me. I share every moment with many thousands of people watching from around the world. In 2012, Katmai National Park partnered with explore.org to host streaming webcams at Brooks River. Several webcams (collectively and affectionately known as the bearcams) stream live footage of Brooks River each summer and fall, allowing anyone with an internet connection the opportunity to watch bears fishing for salmon.
Each year, the bearcams receive millions of views. During 2021, for example, the bearcams saw 16.5 million page views on explore.org. People also watched from 110 countries and all 50 states. The programs that rangers and I host on the bearcams reached hundreds of thousands of people collectively. These numbers are several orders of magnitude larger than even the record setting visitation experienced at Brooks River during the same year.
Although the bearcam experience lacks the immersiveness of an on-site visit, its depth far surpasses anything you’d typically get in person. A webcam experience isn’t limited by flight schedules, vacation days, outdoor skills, fitness, or wellness. It lasts as long as you want. It is accessible whenever you want. Through the bearcams, we watch bears not for a hurried few hours. We watch across weeks, seasons, and years. We see bears return to the river every year of their lives. We watch mother bears rear multiple litters of cubs, and those cubs, in turn, mature through sub-adulthood and adulthood. We discern the breadth of each bear’s individuality as it decides how to make a living. We witness the ebb and flow of the largest salmon runs left on the planet, how the fish underpin Katmai’s ecosystem, and how their year-to-year variability influences the behavior of bears and other wildlife. There’s no wildlife-watching experience quite like it.
If you haven’t experienced a national park through a webcam, then it might be difficult to envision that watching a park through a webcam can be meaningful. But, friends, it is true. A study comparing and contrasting on-site (i.e. in-person) and online (webcam) visitors to Brooks River found that webcam viewers emotionally connected with bears at higher levels than on-site visitors. The same study found that webcam viewers also support protections for bears at higher levels than people who visit in-person. In fact, support for bears and national parks among webcam viewers equalled or exceeded those reported by on-site visitors on almost all metrics evaluated in the study. Subsequent research has found that the bearcams provide mental health benefits and that people greatly value the individual animals that they see through webcams. To expand these lines of research, I’m collaborating with Dr. Lynne Lewis from Bates College, Dr. Leslie Richardson from the NPS and Dr. Jeffrey Skibins from East Carolina University to conduct and analyze more on-site and online surveys of Katmai’s visitors. Our analyses of online surveys from 2019 and 2020, for example, have confirmed previous results and have even underscored the importance of individual, easily recognized bears in people’s experience.
As the aforementioned crowding issues demonstrate, providing space for everyone who wants to visit parks in-person isn’t feasible or sustainable for Katmai or any other national park. It is feasible, however, to provide meaningful, memorable wildlife and nature-based experiences through the democratizing and stewardship-raising force of webcams. (And if you don’t believe me after all this, please go to the bearcams and ask for yourself in the comments.) It’s long past time for more national parks to utilize webcams to bridge barriers that hinder people from finding meaning and value in national parks and other wild spaces.
I’ll be the first to admit that the bearcam experience is different than visiting Katmai in-person, and my advocacy for the use of webcams does not mean I believe webcams can or should replace the in-person park experience. Nothing that a computer screen provides can truly replicate the wellspring of awe that I feel while standing at Brooks Falls and seeing a dozen bears compete for fishing spots. But, for almost everyone except very fortunate individuals like me, the in-person bear watching experience is ephemeral. Only a tiny fraction of Brooks Camp’s visitors return more than once, according to the two most recent in-depth visitor surveys (2006 and 2014). It’s a once-in-a-lifetime trip for many. For others, it’s not feasible at all.
We can’t build our way out of crowding and access issues like we did after the post-WWII tourism boom or try to shove people into parks during increasingly crowded “non-peak hours” or “shoulder” seasons, not if we want to ensure a high-quality experience, the integrity of park ecosystems, or address the systemic barriers that prevent many people from visiting parks. In contrast, webcams in national parks can provide a form of nature-based equity. They create life-long and devoted stewards among those who may never visit in-person. They help our nature-starved societies find connections with the non-human realm. They heal people.
National parks rank among the nation’s most revered landscapes, and their place within American culture is no accident. In the 150 years since Yellowstone National Park’s establishment, the national park idea has evolved. Yellowstone and other parks are much more than places “set apart as a public park or pleasuring-ground for the benefit and enjoyment of the people.” We value parks for the solace they give us, the fun we experience in them, the wonder and awe they inspire, the opportunity to consider our shared history, and, of course, for the plants, animals, and natural processes that parks harbor. I cherish my time in parks. Everyone deserves access to similar opportunities.
In the United States at least, many of us are eager to return to some semblance of normalcy in a COVID-positive world. Our governments and public discourse are a hot mess of arguments about how to best achieve this. In the context of national parks, other public lands, and wild areas, however, “normal” does not equate universal access. It never has. This upcoming spring and summer, national parks will once again be overwhelmed with people. Rangers will do their best to cope, but without more rangers and the regulatory and policy tools to address congestion, the NPS will go back to its default mode: put out active fires, ignore the tinder, and hope the flames don’t spread.
Katmai National Park existed within the standard visitation paradigm for decades. For those who visit to watch bears in-person, it is an amazing and profound experience. When I worked there as an interpretive ranger, when I’ve visited during my free time, and when I’ve returned as a fellow with explore.org, those moments when I watched bears expressing their survival instincts are experiences more meaningful and memorable than almost any thing else I’ve done in my life thus far.
I last worked as a ranger in Katmai in 2016 though. Without webcams Brooks River would be a fading memory by now, no matter how many photos I took or journal pages I wrote. With the bearcams I, along with anyone else with an internet connection, can return at any time to find inspiration in the beauty of our world as well as the tenacity and intelligence of wild animals. Watching bears, whether in-person on online, creates life-long memories and inspires stewardship. Are national parks truly spaces for everyone? Not yet, but if more parks use webcams as a tool to reach people there’s no reason they can’t be.
Most of the bears who use Brooks River in Katmai National Park are known individuals that return to fish for salmon year after year. Many return for their entire lives, and their stories are an integral part of my book, The Bears of Brooks Falls. Last month, I invited readers to guess the identities of the bears on the print and audio covers. I placed entrants into separate drawings for the chance to win free copies of the print and audio book as well as a personalized signed copy of the print book. Here are the answers and the lucky winners.
On the print book cover, two of the three bears are fairly distinctive yet all three are legends.
Sitting below the falls is everyone’s favorite example of patience and efficiency, 480 Otis. His face is a bit obscured due to the camera angle. The photo was also taken before he acquired a bit of a wonky right ear, but you might recognize his classic Eeyore-like posture.
Standing on the lip of the falls at upper left is 6 Headbob, a bear identified as a young adult male in 1988. When I first saw him in 2007, Headbob was a large and skilled angler who had free access to his preferred spot on the lip. (I do wonder how he would’ve fared if he had to compete with Grazer this year.) Headbob was one of the first bears to teach me about longevity and survival for older individuals in this long-lived species.
The other bear on the lip is difficult to identify. In this photo he’s a young adult soon to mature into one the river’s most dominant bears. It is 856. Starting in 2011, he reigned as the river’s most dominant bear for most of a decade. No one predicted his rise to the top of the hierarchy. Even though 856 took a slight step back this summer and began to yield to the mighty 747, it may be many years before we encounter another bear with a similar combination of his size, assertiveness, and fighting skills.
This National Park Service photo of 856 was taken on July 6, 2006. The difference in 856’s coat color between this photo and the book cover is due to shedding. Brown bears shed their fur in early summer, so the audio book cover was likely taken in late July 2006 or 2007.
Now to the audio book cover. At upper right is 489 Ted and at lower left we see 32 Chunk. Ted is recognizable by his triangle-shaped ears and distinctive scar on his left hip.
His scar, notably, is the remnant of a large wound he received in 2007. Fair warning: the video is gasp worthy. Ted showcased a bear’s ability to get on with life despite pain.
Bear 489 Ted on August 3, 2007. National Park Service photo.
Chunk is a bit harder to identify. In this photo, he has no obvious distinctive features like Ted. Instead, I recognize him by his face and body shape. Even during his subadult and young adult years, Chunk always had a pear-shaped body.
Since Ted’s wound is relatively small in the cover photo and he was last seen in 2013 and since Chunk appears to be a sizable young adult, then this places the photo sometime during 2011 – 2013.
Only one person correctly identified all the bears on the print book cover. Congratulations to Mariah Denhart from California for correctly identifying all the bears on the print book cover. She receives a personalized signed copy from yours truly. No one correctly guessed the both cover bears on the audio book, so I placed all entrants from that category with at least one correct ID into a separate drawing. Congratulations to Jolene Nagle from West Virginia who wins a free copy of the audio book. Lastly, congratulations to Mike Hass from Oklahoma who wins a free print book from a drawing of all “Guess the Cover Bear” entrants. I’ll be touch with each winner via email with more details.
Thank you to everyone who participated. I’ve been overjoyed by the positive notes and reactions that have been sent my way about the book. Most importantly, though, I hope it enhances your understanding of Brooks River, its bears, and your bearcam watching experience on explore.org. May it inspire you to protect this special place for bears, salmon, people, and all the area’s inhabitants now in the future.
PS: Bearcam fan and sometimes National Park Service volunteer Stacey Schmeidel has been leading a book club about The Bears of Brooks Falls this summer. The next meeting is September 11 when the club discusses Chapter 11: Keystone. Please sign up for the Zoom meeting if you want to participate.
We’re in the thick of the bear-watching season at Brooks River in Katmai National Park, Alaska, and I returned only recently from a two week trip to the river to host live bearcam events. I didn’t get enough sleep during that time, yet the fatigue was a minor inconvenience so I could experience the bears in person, and more importantly, share that experience with people around the world. Please tune into the bearcams every day for perhaps the best, live wildlife-watching experience on the internet.
Katmai’s rangers and I have many live bearcam events in store for the rest of the summer. But if you are looking for a different type of bear-related event, I’m excited to join two great bookstores on opposite corners of the United States for talks about my book The Bears of Brooks Falls: Wildlife and Survival in Alaska’s Brooks River.
On July 22 at 9 p.m. Eastern (6 p.m. Pacific), I’m joined by bearcam fan, national park volunteer, and fearless book club leader Stacey Schmeidel for a Q&A with Third Place Books in Lake Forest Park, WA. Register for this event.
On July 29 at 6 p.m. Eastern (3 p.m. Pacific) I’ll talk with Heidi Carter, owner of Bogan Books in Fort Kent, Maine—the most northeastern bookstore in the United States. Join this event on the Bogan Books Facebook Page.
Bearcam is back for 2021, and while it’s still very early in the season several bears—including Grazer, Holly, and their yearlings—have made an appearance. As Rangers Naomi Boak and Lian Law discussed with me during our Welcome to Bearcam live chat, there are many fascinating storylines to follow this year. At the risk of offering a shameless plug, my book, The Bears of Brooks Falls, explores many of those stories too.
A dedicated book club has sprung up to discuss the book. At the end of each meeting, participants answer one question: If you could ask the author anything, what would be? Below, I’m happy to answer those questions. If you are interested in joining the book club for their next discussion on June 19 via Zoom, please sign up.
Questions from the club’s discussion of Part One: Creation and Discovery (May 29, 2021)
Can you clarify WHY there used to be fewer bears at the falls? In the past, were they hazed away? Did they stay away from the falls because anglers were given priority there?
In Part One of my book, I discuss the events that led to the proclamation of Katmai National Monument in 1918 and the monument’s evolution into one of the largest national parks in the United States. Bears were not a major tourist attraction at Brooks River until long after Brooks Lodge was established. It wasn’t because anglers were given priority. It was because the bear population was much smaller than today. The national monument was expanded in 1931 to include areas such as Brooks River to protect habitat for wildlife like bears, but:
By all accounts, few bears used the river when Brooks Lodge first opened for business in 1950. Bears and any type of bear-management activities were absent from the reports of the first rangers stationed at Brooks Camp. Ranger Russell Todd, for example, never saw a bear on foot in the summer of 1954. The presence of people alone was apparently enough of a deterrent to displace bears from the river except at night. In 1957, biologists conducting salmon research at Brooks River for the US Fish and Wildlife Service reported bears “loudly evident” every night during September at the salmon- counting weir strung across the head of the river.
How many bears lived within the monument at that time remains an open question, but it was likely not many. The population may even have been at a nadir, the result of decades of heavy hunting pressure near the monument and, I suspect, the lingering effects of the 1912 eruption. After a two- summer biological investigation of the monument in 1953 and 1954, Victor Cahalane reported: “It is impossible to make even a rough estimate of the population of bears in Katmai National Monument.” Yet he tried. According to his and other anecdotal sightings, including one from a pilot who claimed to have seen 60 bears along Savonoski River in early September 1954, Cahalane ventured that about 200 bears lived in the monument.
Steady levels of salmon and a reduction in hunting pressure outside the monument were probably the main factors that allowed the area’s bear population to slowly increase, but at Brooks Camp people inadvertently helped accelerate the bears’ use of the river. By the end of the 1960s, a small and growing contingent of bears had become accustomed to the easy access to unsecured food at nearby garbage dumps, the lodge’s burn barrels, and unsecured supplies. By the mid- 1970s, Brooks Camp had become well known as a place to find at least a few bears, and several had begun to fish in the river during the day when people were active. (Pg. 172-173, The Bears of Brooks Falls)
I will add that over the last 40 years, salmon runs in the Naknek River watershed have been quite strong and that, perhaps more than anything else, has allowed the bear population to increase in the park. Additionally, during much of that time, park staff management have emphasized minimizing bear-human conflicts. The experience of cubs that accompanied their mothers to Brooks River may now consist largely of relatively benign contacts with people. This probably allowed the number and proportion of adult bears tolerant of people to increase.
It sounds, from Mike’s description [in Chapter 3 — Ramble], that the outlet of Brooks Lake into Brooks River is pretty shallow. Could global warming threaten the snowfall on the mountains, dropping the level of the lake and halting the flow of the river? If so, could that be a risk in the near future?
Although I can only provide a speculative answer, and while Lake Brooks will be affected by a warmer atmosphere, its water flow may not change appreciably. Lake Brooks occupies a deep basin that is almost completely below the water table of the surrounding land. There are no glaciers in its headwaters, unlike nearby Naknek Lake, so it’s already adapted in a sense to a hydrology that is highly influenced by annual precipitation. Snowmelt is only one influence. After most of the snow melts from the watershed in late spring, then summertime rain seems to have the biggest influence on water levels in the lake. Wetter summers can raise lake levels more than a foot compared to dry summers. Importantly, much of its water is sourced from spring-fed streams and springs under the lake surface. So, even during drought years, the lake basin experiences some recharge.
Climate change is certainly altering Katmai’s landscape, both the land and water. In 2019, we saw the impacts of a very hot, dry summer on Brooks River. Water levels were quite low and water temperatures were quite hot during an early July heat wave that year. However, water continued to flow through the river, albeit at a reduced level.. That’s just one year, though. By the end of the century—especially if we don’t get our act together and reduce our greenhouse gas emissions as quickly as possible—the summer of 2019 will be one of the coolest of this century. Droughts and heat waves may become the norm in Katmai. For more information on the present and future of Katmai’s climate, please see chapter 17 of The Bears of Brooks Falls.
Can you clarify the distance from Brooks River to Margot Creek? Is it common — or uncommon — to see “our” cam bears at Margot Creek?
The shoreline of Naknek Lake between Brooks River and Margot Creek is about 13 miles, well within a day’s walk for a brown bear. If a bear takes a few shortcuts through the forest, then the walk is closer to 10-12 miles.
Several identifiable Brooks River bears use Margot Creek in August including 402, 435 Holly, 480 Otis, and 856. I would not be surprised if there are others well. But, salmon are dispersed widely in central Katmai in August when bears fish at Margot Creek. Unlike early summer and early fall when Brooks River is the only place to fish, bears have many other alternatives to Margot Creek in mid summer so not all Brooks River bears need to go there.
Can you talk about your research process? The book draws on your personal experience — but it clearly draws on extensive research, too.
When I began drafting the manuscript, I thought most of my research was finished since I had to study a lot to prepare programs and talk about bears when I was a park ranger at Katmai and through my current job at explore.org. That head start was helpful but not thorough enough. It was merely the foundation to build upon.
As I wrote, I wanted to be sure that my facts and conclusions were backed up by personal observations, experience, and the best available science. While working on the manuscript, I probably spent half my time reading research and half my time writing.
I began writing each chapter by outlining it. Then after I established what I wanted to write about and the stories that would add depth to the facts, I read or skimmed through the relevant books and scientific papers that I saved previously to establish the basic facts that I wanted to include and confirm what I thought I knew. This led me down many rabbit holes. I probably read dozens of papers for some chapters, especially Chapter 4 on hibernation. Tracking down specific facts and, hopefully, ensuring that I represented them accurately in the book was a tedious yet necessary task. Readers deserve no less.
Not a bear question, but a question for you as an author: What did it hurt to leave out of the book? What did you have to omit that you wish you’d been able to keep?
Quite a lot, actually. For example, I drafted chapters on glaciation and the evolution of Brooks River, but after consulting with an editor I decided to cut those. They weren’t a great fit for the narrative I tried to build. I also wanted to include the story of Holly adopting a yearling 503 in 2014 but couldn’t find the right place for it when I outlined the book. I considered using that story as the framework for Chapter 5: Family, but since adoption in bears is so uncommon I thought it best to focus on a bear whose maternal experiences were engaging yet more typical. That’s how I settled on 273 and her cub for Chapter 5. I’m happy with the final result of that chapter, yet I still wish I had found a way for Holly to be a part of it.
Questions from the club’s discussion of Chapter 6: Mating Season (June 6, 2021)
What if a female [bear] doesn’t want to mate? How much “say” does she have in the decision?
The female bear can’t control estrus or the signals that indicate to males that she is in estrus. However, female bears seem to have a lot of say in the timing of copulation. Although male bears are much larger than females, I’ve never seen a male bear force himself on a female bear. Instead, he doggedly follows her until she is ready to accept his advances. I also wonder if prolonged courtship can provide female bears with the chance to shed a suitor that they do not prefer. As I write in the book, a bear’s sense of smell is so powerful that a female can’t hide from a male. But, since mating opportunities are so limited for males, it’s not uncommon for more than one male to catch the scent of an estrous female. A prolonged estrus cycle coupled with a lengthy courtship could increase competition between males—an unconscious way for her to attract the most “fit” mate.
What is the ratio of males/females at Brooks River?
It hovers near 50:50, but last year there were more females than males. Because large adult male bears occupy the most productive fishing spots at Brooks Falls, it can sometimes seem like there are more males on the river than females. In July 2020 park bear monitoring staff identified slightly more female bears than males (29 adult females, 22 adult males, 14 subadult females, 11 subadult males).
Can you talk a bit about inbreeding? It seems like a lot of the bears we see mating are likely related to each other…
There’s only one confirmed case (through DNA analysis) of consanguineous couplings (inbreeding) between related bears at Brooks River.
24 BB was a very dominant male bear at Brooks River from the late 1990s through 2007. He was the equivalent of 856 during that time, and because of his dominance few bears would ever challenge him for fishing spots or for access to estrus females. BB sired a litter with the female 209. Bear 402, who still uses Brooks River, was one of the cubs from that litter born in 1998. 24 BB then sired a litter with 402. The offspring from the 402/24 relationship were weaned by 402 and identified as independent bears, but have not been seen in many years. I should note that this is common among subadult bears and their absence may not be reflective of interbreeding between a father bear and a daughter bear.
The limited DNA analysis of bears in 2005-2007 did not document any litters from a mother/son relationship. I think it’s unlikely that a bear could mate with its mother for a couple of reasons. 1. Male bears compete for the opportunity to mate with females and a larger, more dominant male would certainly outcompete a younger male bear for access. So while a young male bear is mature enough to mate around age 6, he’s still quite small compared to older males. 2. Young male bears often disperse away from their mother’s home range, and consequently their ranges as adults might not overlap. Mother bears remember who their offspring are too, and mom is often intolerant of the approach of her former cubs (we sometimes see a mother charge her former cubs, even years after family breakup, almost as if she is saying, “I told you to leave. Now stay away”).
Katmai’s brown bear population is quite large and robust. About 2,200 bears were estimated to live wholly or partly within Katmai National Park and Preserve in 2007. Although, we don’t know its true frequency, inbreeding between bears is probably uncommon here since the population is so large.
Why do mating males want to keep females in sight? It seems like all this following females around would distract males from eating and getting fat.
Courtship between bears isn’t always a prolonged process. In fact, sometimes bears couple soon after meeting. Potential male suitors, therefore, need to guard access to their prospective mates, lest they lose a rare mating opportunity.
The pursuit of mating opportunities certainly distracts male bears from other life tasks like fishing for salmon. I remember one July when 856 seemed like he didn’t stop courting females for the entire month. While the other males at the river got their fill of fish, 856 fished only occasionally because he was more interesting in reproduction. Near the end of July, he looked well muscled from the exercise of the pursuit but looked as though he had little body fat.
856 often spends a lot of time courting females in early summer and less time fishing compared to many other adult bears. He can afford to do so because his high level of dominance provides access to fishing spots wherever he goes.
“Survival of the fittest” is often thought to refer to athletic fitness or survival instincts, when it is more accurately framed in terms of reproductive fitness. Perhaps the male bears who have the energy reserves and stamina to court female bears for long periods of time with little food are the most reproductively fit. It’s also important to consider that the bears’ mating season ends in early summer, just when food becomes plentiful in Katmai, so a male who doesn’t eat much in June has ample opportunities to make up for it during the next few months.
Questions from the book club’s discussion of Chapter 14: Boundaries (June 12, 2021)
Is there any research showing how reduced attendance during the 2020 pandemic affected the salmon and/or the bears?
As far as I know, there’s nothing publicly available yet. However, biologists at Katmai National Park expanded the bear-monitoring program last year to collect data that might help answer that question. It was an unexpected research opportunity to observe bears at Brooks River at a time of year when typically it is loaded with people.
Certainly the lack of people at the river in 2020, especially when the camp remained closed to the public, allowed bears more space to fish. The greatest influence on the distribution of bears last year, though, was salmon. The record run of sockeye salmon was overwhelming and it provided bears with ample feeding opportunities throughout the river. In a year with fewer fish, I don’t think we wouldn’t have seen bears using the lower river in early summer as much as they did in 2020, no matter how few people visited.
The bears at Brooks are perhaps more human-habituated than other bears. And yet, as 854 Divot’s story proves, they do wander outside the boundaries of the park, where they will encounter humans who don’t operate according to park rules. Can you offer some reassurance — or some insight — about how their human habituation might affect their fate outside park boundaries?
Habituation at Brooks River provides a bear with advantages. It allows access to parts of the river that may otherwise be off limits if the bear isn’t tolerant of people. At Brooks River, people are especially tolerant of bears too through both attitude and regulations designed to protect bears.
Outside the park, they may not encounter the same tolerance. Having a bear prowling outside your cabin at Brooks Camp is one thing. Having it do so near your children and pets is another.
If a habituated bear wanders into King Salmon, for example, its tolerance for humans may lead it to temptation in the form of unsecured food and trash. A habituated bear could more easily become conditioned to seek human foods in that situation. Bears encounter much greater risks around people in those places than they do at Brook Camp.
Some biologists I’ve spoken to speculate that habituation could be context specific. That is, a bear might be able to learn that people in one location are tolerant while people in another location are dangerous. I think this is plausible but I’m not yet convinced it works that way for most bears. Further research is needed.
August 6, 2015. I stand at the crest of Katmai Pass, remarkably alone in an exceptionally quiet place, not having seen or spoken to a person in five days. Surrounded by wildness, I couldn’t help but think of the transformational moments that occurred here about 100 years before.
While wildlife such as brown bears take center stage in Katmai National Park today, volcanoes originally placed Katmai on the world map. Each national park is unique, but Katmai stands apart from all others for a landscape that did not exist before June 6, 1912.
An extinct fumarole in the Valley of Ten Thousand Smokes.
On June 6, 1912, around 1 p.m. in the afternoon, Novarupta volcano exploded at the head of the isolated Ukak River valley. The eruption continued for 60 hours, plunging the region into darkness. It was the largest eruption of the 20th century and the fifth largest in recorded human history. Novarupta unleashed roughly 4 cubic miles of ash and 2.6 cubic miles of pyroclastic flows. In total, this represents 3 cubic miles of underground magma, an output greater than the eruption of Krakatoa in 1883 and 30 times more than the eruption of Mount Saint Helens in 1980. The eruption drained a magma chamber underneath the 7,600-foot Mount Katmai, creating a 2,000 foot deep caldera, and flooded the area near Novarupta in hundreds of feet ash and pumice.
In the aftermath, the Katmai area, particularly the mainland Pacific coastline and interior regions near Mount Katmai became uninhabited. What seemed to be a wasteland, however, would soon inspire the movement to establish Katmai National Park.
Robert Griggs was a professor of botany at Ohio State University when, in 1915, he led a National Geographic Society expedition to explore vegetative recovery on Kodiak Island. About of foot of ash fell on Kodiak in 1912 and Griggs found the town “bleak and desolate” with only tall shrubs, trees, and hardy perennials surviving above the ash when he visited in 1913.
Upon his return to Kodiak in 1915, however, Griggs found a wholly different place. The island was verdant. As he recalled, “[I] could not . . . believe my eyes. It was not the same Kodiak I had left two years before. . . . I had come to study the revegetation, but I found my problem vanished in an accomplished fact.” Griggs concluded the foot-deep ash, rather than killing the hardy perennials underneath, served as a mulch that retained soil moisture and suppressed competition for space and nutrients.
Instead of remaining on Kodiak watching the grass grow, Griggs decided to explore the area closer to the eruption center with his remaining time. Landing in Katmai Bay with two expedition companions, Griggs discovered a strikingly different scene than the greenery of Kodiak, one that he described as an “entrance to another world.” It seemed the entire world was covered in ash. Traveling conditions were so difficult—they routinely encountered thigh-deep quicksand and dangerous river crossings—that the team could not ascend far up the valley. The little he saw, though, convinced Griggs that the area was worthy of further exploration.
The next year, 1916, Griggs returned determined to reach Mount Katmai, then thought to be the sole source of the 1912 eruption. His larger and better-equipped expedition slogged up valley that July and eventually climbed Mount Katmai, becoming the first people to gaze into its 2,000-foot deep caldera.
While on the caldera rim, Griggs thought he saw wisps steam wafting from the far side of the volcano. He would soon discover what lay on the other side but was wholly unprepared for what he saw. I’ll let this excerpt from my book, The Bears of Brooks Falls, describe what happened next.
July 31, 1916 was a tiresome day for Griggs and his two partners, Donovan Church and Lucius Folsom. Their legs remained fatigued from their second Mount Katmai climb and the ash beds offered little firm ground to stand on.
Not far from the highest point in Katmai Pass, Church gave out, “incapacitated by too many flapjacks at breakfast” and waited while Griggs and Folsom continued onward. Griggs’ first glimpse through the pass didn’t hint of much worth investigating except more ash and pumice, but just as he considered turning back a tiny puff of steam caught his attention. This fumarole, or volcanic gas vent, wasn’t particularly large, but the day was damp and chilly so Griggs used it practically, warming his hands in the condensing steam. Shortly afterward he spotted another plume rising from a larger fumarole in the distance. Curiosity hastened Griggs forward and he climbed a small hillock for a better vantage.
“The sight that flashed into view . . . was one of the most amazing visions ever beheld by mortal eye. The whole valley as far as the eye could reach was full of hundreds, no thousands—literally tens of thousands—of smokes curling up from its fissured floor.
“After a careful estimate, we judged there must be a thousand whose columns exceeded 500 feet. I tried to ‘keep my head’ and observe carefully, yet I exposed two films from my one precious roll in trying for pictures that I should’ve known were impossible. For a few moments we stood gaping at the awe inspiring vision before us…It was as though all the steam engines in the world, assembled together, had popped their safety valves at once and were letting off steam in concert.”
With the day waning and Church still waiting on the other side of Katmai Pass, Griggs and Folsom had little time to explore further, but this was truly virgin territory. No one had set foot in this valley since the eruption irreparably altered it. No one had felt the hot earth under their shoe leather or warmed their hands next to the fumaroles. No one had seen the eruption’s epicenter, the steaming dark gray lava dome Griggs would later name Novarupta. After roughly estimating the number and extent of visible fumaroles, he christened the landscape the Valley of Ten Thousand Smokes.
Griggs didn’t return to his base camp until very late in the day. Despite his fatigue he found sleep impossible, his mind whirling with thoughts about the valley he had just found. The landscape was “unseen and unsuspected…until this hour…I had yet only a very inadequate conception of the place we had discovered, but I had seen enough to know that we had accidentally discovered one of the great wonders of the world. I recognized at once that the Katmai district must be made a great national park, accessible to all the people, like Yellowstone.”
Griggs returned home later that summer and began immediately to lobby for a national park in the Katmai region. With the support of the National Geographic Society and their contacts in the federal government, President Woodrow Wilson proclaimed Katmai National Monument in 1918.
Standing in Katmai Pass about 100 years later, I thought of the moments that Griggs and Folsom experienced as they wandered into the Valley of Ten Thousand Smokes for the first time. With the heat trapped in the ash and pumice having almost completely dissipated, there are no fumaroles in the pass today. Large lava flows from the southwest flank of Mount Trident, even fresher than the 1912 deposits, constrict the valley leading to the pass from the south. A wrinkled cryptogamic soil covers much of the pumice, anchoring the airy gravel in place. The veneer of glaciers on the nearby volcanoes has thinned as the climate continues to warm.
Still, the scene remains remarkably similar to that in which Griggs experienced. No roads or maintained trails snake their way into the Valley or the pass. The views are unimpaired. No light pollution reaches its night skies. In calm weather, your footsteps and heartbeat are often the only sounds—a quiet so immense that the rip of a jacket’s zipper feels like an intrusion. The Valley of Ten Thousand Smokes is contradictory, both wholly different and very much the same as it was when it inspired Griggs to pursue permanent protection for a unique landscape on the face of the Earth.
In 1912, the Alaska Peninsula was forever changed. Rarely has a single event—one that humans witnessed—catalyzed the creation of a national park. If you’ve been fortunate enough to experience the sublimity of wild landscape then perhaps you’ve also experienced something akin to what Griggs felt at Katmai Pass in 1916. The legacy of the discovery of the Valley of Ten Thousand Smokes continues to shape the history of Katmai.
Looking north in Katmai Pass near the spot where Griggs and Folsom found their first fumarole. The Valley of Ten Thousand Smokes is found just beyond Mount Cerberus at center.
It’s been two months since my book, The Bears of Brooks Falls, was released for your reading pleasure. Whether you’re fortunate enough to visit Brooks River in person or if you are a fan of the Brooks River bearcams on explore.org, I hope the book will become a valuable companion to your bear-watching experience. I’ve been pleased to find many people have enjoyed it and found its storylines to be enlightening.
I also hope it’s provoked your curiosity about bears, salmon, Katmai National Park, the history of national parks, and the evolving role that people play in parks and other wild landscapes. With bearcam season right around the corner (expect the cams to go live in mid to late June), I’m also coordinating with bookstores to host online talks about the book.
There’s been no designated place for readers to ask questions about the book though, so let this post serve that purpose. If you have a question or a comment about something you read in The Bears of Brooks Falls, then please drop it in the comments. I’ll do my best to reply. And, of course, I’ll be online almost everyday during bearcam season to answer your questions about bears and salmon as the resident naturalist with explore.org.
I never understood how difficult writing a book can be until I tried it. The brainstorming. The planning. The research. Pitching agents (none were interested). Pitching publishers (I got lucky). The worry. The self-doubt. The first draft. The first, second, and third revisions. The Nth revisions.
Finally, after months and sometimes years, you’re left with a book that you hope will bring some joy and meaning to people and place. Writing The Bears of Brooks Falls: Wildlife and Survival on Brooks River is the culmination of my years of study and observation at one of the most unique and special places in America’s national parks.
Through the drafting process, I wrote, revised, and cut more sentences and paragraphs than I can remember. While revision is often difficult, this is where, for me, the pleasure of writing expresses itself most often. Only through revision can I work through the nonsense and polish the narrative so it reads—I hope—in a logical, intelligent, and engaging manner.
During the drafting and revision process, I cut large sections and even whole chapters from the final manuscript as I discovered new or more concise ways to frame the story of Brooks River. Today, I present a chapter sacrificed for the greater good. Some of it was incorporated into the print and digital versions of The Bears of Brooks Falls, but as I progressed deeper into the manuscript I realized this particular essay needed to be cut so that the narrative could focus more on the brown bears, salmon, and people of Brooks River. I present it here as an online-only chapter for your reading pleasure, illustrated with photos and only lightly edited from its final draft.
Sit back and relax. This is a long read.
In the coming weeks, please check my blog and Twitter feed to find details about how to order signed copies of The Bears of Brooks Falls. And, be sure to ask for it at your favorite independent bookstore. The book ships out March 9, 2021.
Sculptor
I open the gate on the north side of the campground and latch it behind me, careful to avoid the live wires strung horizontally from post to post. The electric fence is an oddity for a national park campground, yet one that is necessary to prevent bears from pressing their noses against the sides of nylon tents.
Outside the campground, following a narrow trail through forest, the world seems to shrink. Thick vegetation limits views of the surrounding landscape. The Dumpling Mountain Trail ascends through a thick understory of head-high grass, shrubby willows, and the corduroyed stalks of cow parsnip. Above the trail hovers a semi-closed canopy of birch and poplar leaves. I’m eager to reach the tree line, which the regional climate keeps at about 1,000 feet above sea level in central Katmai, and explore more open vistas. I march on despite the trail’s steepness.
After forty minutes of brisk travel, I arrive at a small rocky knob where the forest transitions to alder thickets and grassy meadows speckled with the occasional white spruce. Here I stop, not so much because I am winded, but because the perch is one of my favorite spots to loiter.
A complex wilderness panorama stretches to every horizon. A rugged volcanic arc—the ragged crest of the Aleutian Range—marks the eastern and southern skylines. Flanked by reposed Mount La Gorce and the sharp, angular ridges of Mount Katolinat, Naknek Lake emerges from the foot of the mountains and fills much of the nearby low elevations. Directly south, Brooks River meanders through dense spruce forests before its clear water spins in lazy plumes as it mixes with the turquoise water of the glacial lake.
Without catching a plane ride this overlook provides one of the only places to view the river in its entirety. Brooks River and Brooks Falls look insignificant on the scale of the surrounding landscape. Had I first stumbled up Dumpling Mountain with no prior knowledge of the falls, I’d be hard pressed to even notice the line of white foam marking it.
My gaze shifts back to the mountains and lingers on Mount Mageik, a glacially clad volcano about 30 miles to the southeast. Low clouds and precipitation obscure its coalesced summits from this vista on many days, but today’s weather is atypical. Few clouds hover in the sky and the wind is relatively calm. Under bright sun, Mageik’s glaciers seem so pure and fixed, but this is an illusion of time and scale.
I cannot see the glaciers slowly wearing down Mageik, nor will I live long enough to witness anything more than superficial glacial erosion on it, but the view provokes me to ponder the sea of glacial change that shaped this land. The shape of the valleys and lakes below me, the sediments that Brooks River erodes, and even the color of Naknek Lake are all products of glaciers. The full story of Katmai’s glaciers spans a geologic epoch and reaches to land now flooded by the Bering Sea. Until relatively recently, glaciers were this area’s most ubiquitous and prominent agent of geologic change.
The view looking east from an overlook on Dumpling Mountain. Brooks River is located at lower right.
Mageik’s glaciers, like all glaciers, are a product of climate, and the Alaska Peninsula has a well-deserved reputation as a damp and chilly place. Climate data for the region is limited, but enough has been gathered from airport and remote automated weather stations to draw some conclusions about the precipitation patterns affecting the area’s glacier formation and growth.
Katmai National Park lies at the head of the Alaska Peninsula, a northeast-southwest trending arc of land jutting into the North Pacific and Bering Sea. The peninsula’s location and orientation expose it to the vast majority of storms bred from the Aleutian Low, a semi-permanent low-pressure system originating near the outer Aleutian Islands. The peninsula’s mountains represent a major topographical barrier to these northeast-tracking storms, forcing warm oceanic air to rise and cool. Water vapor condenses under these conditions and frequently falls as rain or snow. If the day’s weather is damp at Brooks Camp, it is almost certainly wetter along the crest of the Aleutian Range. While inland valleys north and west of the Aleutian Range are spared the full brunt of Pacific and Bering Sea storms, they still may receive about 40 inches of precipitation per year. At higher elevations, though, precipitation increases dramatically. Computer models indicate the volcanic peaks, like Mount Mageik, where snow can accumulate year-round, receive over 98 inches (250 cm) of annual precipitation, enough to qualify as a rainforest if trees could grow there. When global temperatures were as much as 10˚C colder during the Pleistocene Epoch, about 2.6 million to 12,000 years ago, most precipitation over the Alaska Peninsula fell as snow and little melted compared to today. Conditions were ripe for the formation and growth of glaciers.
Thirty thousand years ago, Dumpling Mountain was an island in a glacial sea. Even the overlook where I sit, over 700 feet above Naknek Lake, was smothered by ice. Naknek Lake, the Brooks River area, and nearly all of Katmai were buried. From an ice cap centered over Cook Inlet and Shelikof Strait, glaciers pushed west and north through gaps in the Aleutian Range near Lake Iliamna and Becharof Lake. Ice overrode almost all of nearby Kodiak Island and all of Cook Inlet to the northeast. Glaciers sourced from the volcanic peaks moved through the entire Naknek Lake watershed and over the future site of Brooks River. Almost no land was exposed in Ice Age Katmai except for rare nunataks, isolated mountains projecting above the ice and snow. Off of Alaska’s southern coast, ice extended to the outer edge of the continental shelf, over what is now only open ocean. Glaciers covered three hundred thousand square kilometers of the Alaska Peninsula, an area about as large as Arizona.
Similar scenes were found across the Northern Hemisphere when ice covered as much as 30 percent of Earth’s surface. In North America, ice sheets reached beyond the present locations of Boston, New York City, and Chicago. Glaciers trapped so much water to lower sea levels by almost 400 feet compared to present day. As a result, Bristol Bay and the Bering Sea, now harboring one of the world’s most valuable fisheries, didn’t exist. In their place, low sea levels exposed Beringia, the subcontinent connecting western Alaska and eastern Siberia. In Katmai, there were no bears or salmon. No forests or lakes. No people. Almost no habitat for the living. Ice was the most extensive and dominant force of change.
Amazingly, all glaciers begin as fragile snowflakes. Snow is ice, but it isn’t very dense. By volume, newly fallen snow is ninety percent air, and individual snowflakes break easily as they settle, compress, or become wet. Freshly fallen snow seems inconsequential to rock. Given enough time and the right conditions, though, snow transforms into a force powerful enough to move mountains.
Snow turns into glacier ice in several stages. First, old snow must survive through summer into winter when it can become buried by new snow. Surviving snow has a granular texture and become harder and denser as it compress under the weight of succeeding layers. Typically within a year, snow granules reach a density about half of liquid water and become firn, an intermediate stage between snow and glacier ice. In its transition to glacier ice, firn recrystallizes and changes shape repeatedly under the influences of percolating melt water, freeze-thaw cycles, and the weight of additional snow. Lastly, firn completes its transformation into glacial ice when air is either squeezed out or trapped as bubbles. In temperate areas this process can transform airy snowflakes into dense blue ice in as little as five years.
A block of ice makes not a glacier, however. Take an ice cube out of the freezer, set it on a table, strike it with a hammer and it will fracture. Due to their mass, the ice inside glaciers behaves differently. Glacial ice experiences enormous pressure, so much so that only the upper 100 feet of temperate glaciers are brittle (a fact revealed by the relatively consistent maximum depth of crevasses). Below this depth, pressure from the overlying ice deforms the ice beneath to seal any voids. Cavities at the base of glaciers have been measured to seal as fast as 10 inches per day. A true glacier flows and deforms under its own mass.
The ice is not impervious to liquid water though. Within the glacier, ice remains at or slightly above freezing, and meltwater percolates to the glacier’s base. High pressure at the base of a glacier also causes melting. Meltwater under a glacier acts as a lubricant helping the glacier slide. These factors, combined with gravity’s pull, drive glaciers along the paths of least resistance.
Not that glaciers stop when they encounter resistance. The erosional power of glaciers can substantially transform a landscape. Glacial movement works the earth like a bulldozer and a rock crusher. The ice erodes and entrains rock, sand, and anything else by plucking or abrading it away from the glacier’s base and sides. Stones and debris at a glacier’s bed are especially powerful erosive tools, grinding and crushing rock further. Much of the eroded debris is swept into the glacier’s interior where deformation and sliding eventually carry it into the glacier’s ablation zone, the area on a glacier where ice is lost and all of the previous winter’s snow melts. Advancing glaciers accumulate and eventually deposit thick mantles of till this way.
Over several large stades, or individual advances, glaciers quarried much of the Aleutian Range. Marching toward Beringia, they carried their eroded cargo far from its source and dropped it when climate no longer supported further advance. The largest, oldest, and most extensive glacial deposits in the region are too far away for me to see from the overlook, but when I turn and face southwest I glimpse a fraction of their extent. Beyond the western shore of Lake Brooks, the mountains stop and a broad plain stretches to the horizon. The power and work of glaciers is demonstrated dramatically by the mere fact this area, the Bristol Bay lowlands, even exists.
The Bristol Bay Lowlands are composed almost entirely of glacial sediments deposited during the last ice age.Wet sedge tundra is the dominant plant cover across much of the Bristol Bay lowlands.
The nearest communities to Brooks River, King Salmon and Naknek, sit well within the lowlands. It’s a buggy, waterlogged place harboring millions of acres of wetlands and tundra. If the Aleutian Range volcanoes and coastal fjords on Shelikof Strait define Katmai’s ruggedness, then the lowlands represent its smoother alter ego, or so it would appear. Hiking on the wet tundra removes the façade. It is an exhausting slog over sedge tussocks that feel and behave underfoot like piles of water-laden pillows. Wind is about the only thing that crosses the lowlands easily, which provides respite from summer’s vampiric black flies but also brings life-threatening cold in winter.
With exceptions for wind-born volcanic ash, sediments reworked by water, and a mantle of peat and vegetation, the Bristol Bay lowlands were entirely created by the glaciers’ assault on the mountains. These are the oldest glacial deposits in the Katmai region, at least 40,000 years old. The till and outwash is even older near the town of Naknek and the Bering Sea coast, exceeding the age limits of radio carbon dating. Glaciers removed so much material from the mountains and carried it to the coastal plain that half of the Alaska Peninsula is glacially derived. Without these glacial deposits, at twentieth century sea levels the Aleutian Islands would begin fewer than 200 miles from Brooks River and water pouring over Brooks Falls would nearly reach tidewater. Naknek Lake would likely be a marine embayment.
The Ice Age was a time of profound geologic change, when the surface of Katmai and Brooks River was constantly reworked by ice. Glacial movements across the region were inconsistent, however. For tens of thousands of years, in response to a fluctuating climate, the area’s glaciers advanced and receded in fits and starts. Within the last 30,000 years, they plowed ahead many separate times. In between stades, when climatic conditions grew too warm, they stagnated or shrunk. West of the park, near King Salmon and Naknek, only faint hills of low relief trace the maximum extent of the most ancient stades, but younger and less extensive advances have been less affected by post-glacial erosion. Their signatures are scribed over the entire Naknek Lake basin.
The last glacier to entirely fill the area now occupied by Naknek Lake, which I refer to informally as the Naknek glacier, reached its greatest extent no sooner than 23,000 years ago. Part of an advance called the Iliamna Stade, it carried ice 60 miles from its source area on the Aleutian Range to its terminus on the lowlands. Topography funneled this glacier into mountain valleys, but to the west of Dumpling it was unbound and free to deform in multiple directions.
Perhaps the best modern analog for the shape and behavior of the ancient Naknek glacier may be Malaspina Glacier in Wrangell-Saint Elias National Park. Malaspina originates high in the Saint Elias Mountains where extensive ice fields more closely resemble high Antarctic landscapes than anything else in North America. As the ice flows to lower elevations, topography sufficiently constrains its source glaciers to valleys. But the Malaspina faces no such barrier as it flows beyond the mountains onto a coastal plain at the edge of the Pacific. Free of the restricting mountain topography, Malaspina deforms outward like a fan of thick batter spilled onto a tabletop. During the Iliamna Stade, circa 30,000 years ago, Naknek glacier looked much the same, flowing from roots in the mountains to a bulbous terminus at the edge of the lowlands. No glacial advance since has been as extensive or influential to Katmai’s geography, ecology, and history.
The Naknek glacier’s size, extent, and erosive power allowed it to accumulate huge amounts of till near its terminus. Much of its eroded debris was trapped within the ice and carried forward. Lesser amounts were pushed ahead as the glacier acted like an indiscriminate bulldozer. When the ice stagnated or receded, the reworked earth was dropped in place creating a terminal moraine, the ridge of till at the farthest reach of the glacier’s snout.
The glaciers of the Iliamna stade, especially the Naknek, thoroughly shaped the modern-day lake basins surrounding Brooks River. Its maximum advance is clearly inscribed on the land by the terminal moraine that now dams Naknek Lake. From the air this moraine, known locally as Pike Ridge, looks like a bore tide of earth flowing toward Bristol Bay. The moraine’s surface is uneven, hummocky, and pockmarked by kettle lakes. Vegetation covers most of it, hiding the raw frigidness of its formative time, but debris of all sizes, everything from clay and sand to car-sized boulders dot its surface. The moraine’s breadth—it spoons the western edge of Naknek Lake for 19 miles north to south—reveals how massive the glacier was as it greatest extent.
Pike Ridge is the terminal moraine of an Ice Age glacier. In this view, the moraine is the hummocky area at center covered in sparse spruce woodlands. Ice flowed from left (east) to right (west) when it deposited the moraine. Naknek River flows through the moraine at the center.
Near the end of the Pleistocene a warming climate never allowed the Naknek glacier to flow as far the Pike Ridge moraine. Each subsequent re-advance was eventually met by warmer and warmer conditions. The erosive and depositional influences of glaciers were waning even as the ice continued to leave its mark.
Between 23,000 and 10,000 years ago, several younger advances plowed through the same basins as the Naknek. While they failed to advance as far as the Iliamna stade, these smaller valley-filling glaciers were not inconsequential. They reworked previously deposited till, eroded bedrock further, and formed large moraines that are still visible. The North Arm of Naknek Lake and the west end of Lake Brooks are constrained by moraines from one such re-advance, the Newhalen Stade. Twenty thousand years ago, a last major resurgence pushed ice though Iliuk Arm toward Dumpling Mountain and the future site of Brooks River, halting only two miles from the present day river mouth.
The Iliuk was the last great stade in Katmai, and its moraine is one of the most prominent geologic features within my line of sight. Iliuk Arm, Naknek Lake’s southeastern-most appendage, sits on its far side. Water from Iliuk Arm flows into greater Naknek Lake through a breach in the moraine, a break which creates fingers of land reaching toward each other like the outstretched arms in Michelangelo’s Creation of Adam.
The slopes of Mount La Gorce and Katolinat dip steeply behind Iliuk moraine where the lake plunges to great depths. Unlike Naknek Lake’s western basin where glaciers were free to splay in broad lobes, the mountain topography on either side of Iliuk Arm restricted the outward flow of ice, but not its forward movement or erosive power. The topographical pinch enhanced and accelerated downward erosion in Iliuk Arm, over-deepening it. While the far western basin of Naknek Lake is often a mere 30 feet deep or less, the abyss of Iliuk Arm is at least 580 feet deep. With Naknek Lake’s surface averaging about 30 feet, Iliuk Arm reaches at least 550 feet below sea level.
The Iliuk Moraine bounds Iliuk Arm of Naknek Lake. Savonoski and Ukak rivers, two waterways originating from modern-day glacial melt, empty into the lake at center.
All of these events have come and gone. Glaciers no longer spill into Iliuk Arm or threaten to overrun the overlook where I sit. No glacier has even advanced within 16 miles of the Iliuk moraine after it formed. Since then, Katmai’s glaciers have retreated to the crest of the Aleutian Range where volcanoes like Mount Mageik still harbor the right climate for their formation. Katmai’s glaciers are remnants of their former selves, yet I need not search long to see evidence that they still work the mountains. Through binoculars I spy Naknek Lake’s largest tributaries at the far end of Iliuk Arm, Savonoski and Ukak rivers. These rivers collectively drain much of central Katmai and each carry astounding loads of sediment eroded by glaciers on the Aleutian Range volcanoes.
I first canoed Savonoski River after paddling for two tranquil days on Lake Grosvenor, a crystal clear lake fed only by springs, unclouded creeks, rain, and snow. My canoe partner and I paddled casually to Grosvenor’s outlet stream. Conditions were placid and there wasn’t much of a need to rush. We relaxed at Grosvenor’s outlet as the flow pulled us downstream. After an hour of easy paddling, our trance was broken when we saw the outlet merge with Savonoski River. It was the antithesis of Grosvenor’s calm.
Savonoski was murky, swift, braided, and shockingly cold. There was no reliable way to judge any one channel’s depth from a distance. The water was so turbid that my fingertips disappeared from view mere inches below the surface. The river didn’t just look thick. It sounded thick, hissing with fine rock that sang off of the bottom of the aluminum canoe. We watched whole spruce trees tumble in the muddy water and carefully avoided others sweeping perpendicularly into the current. Near Naknek Lake, the river spread wide at its confluence with Ukak. On this delta, Iliuk Arm looked like a fjord on a stormy coastline.
Savonoski’s characteristics—icy water, braided channels, and the heavy sediment load—mark it as a classic glacially fed river. Its water pours out of the Hook and Serpent Tongue glaciers, which incessantly grind down some of the tallest volcanoes in Katmai. Much of the river’s larger sediments never arrive in Iliuk Arm, having been dropped anywhere the river’s energy is too weak to carry them further, but the glaciers mill some rock so finely it becomes microscopic, clay-sized bits called rock flour.
The name is apt. Rock flour has the size and texture of the finest white bread flour, ranging from 1 – 100 microns (a micron or micrometer is one millionth of a meter). The biggest rock flour particles, generally larger than 40 microns, are temporary inhabitants of the water column. They remain suspended if the water is continuously disturbed; such is the case in the fast moving Savonoski River where the water resembles a pale gray milk, but the bigger particles tend to sink quickly after reaching the calmer lake. The smallest rock flour particles, however, have a tendency to repel one another, not flocculate, which would cause them clump to sink faster. They are so small that friction in the water column allows them to remain in suspension for months even though they are insoluble. This makes the lake water in Iliuk Arm and near the mouth of Brooks River colloidal, a mix of microscopic insoluble particles (like rock flour) suspended in a second substance (like water). While many lakes in northern latitudes are exceptionally clear (visibility in nearby Lake Brooks extends dozens of feet into the water column) Iliuk Arm holds so much rock flour that visibility is often less than three feet many miles from the Savonoski.
Rock flour’s physical and chemical characteristics lend a deep vibrancy to Iliuk Arm. Naknek Lake shimmers opaquely, but not the pewter tone of lakes under overcasts skies. Instead it’s a garish turquoise blue. Suspended in the water column, rock flour scatters blue and green wavelengths of light exceptionally well creating the rich hues that meets my eyes. Drifting on Iliuk Arm in a kayak on a calm sunny day, surrounded by blue above and enveloped by turquoise underneath, looks and feels like paddling in sky.
Iliuk Arm and other glacially fed lakes owe their alluring look to the microscopically ground rock, but in many ways this is the least of the changes wrought by glaciers. Katmai and the Brooks River area were profoundly changed by ice. Almost every surface feature I see from the overlook has felt the effects. Glaciers repeatedly scoured the land and enveloped it for thousands of years. They ground much of the mountains to powder and moved a lot of the rest nearly to the Bering Sea. Without glaciers, the history and ecology of Brooks River and the entire region would be profoundly different. Yet this is a landscape that continues to evolve. Glaciers only sculpted the stage.
The turquoise water of Iliuk Arm illustrates that glaciers continue to work Katmai’s landscape.
References and Notes:
Aleutian Low and atmospheric ability to hold moisture: Shulski, M. and G. Wendler. 2007. The Climate of Alaska. University of Alaska Press. Pg. 59, 96-99.
Precipitation models for Alaska: PRISM Climate Group. Oregon State University. http://prism.oregonstate.edu. Created 7 Feb 2017.
Many thousands of years ago precipitation patterns were very similar across southwest Alaska: Hults, C. P. and J. Fierstein. 2016. Katmai National Park and Preserve and Alagnak Wild River: Geologic Resources Inventory report. Natural Resource Report NPS/NRSS/GRD/NRR—2016/1314. National Park Service, Fort Collins, Colorado. Pg. 41.
Global temperatures were as much as 10˚C colder than today: Petit, J. R., et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399 (6735): 429–436.
Ice movement and glacial coverage on the Alaska Peninsula: Mann, D. H., and D. M. Peteet. 1994. Extent and Timing of the Last Glacial Maximum in Southwest Alaska. Quaternary Research 42: 136-148.
Newly fallen snow is ninety percent air: Collier, M. 2004. Sculpted by Ice: Glaciers and the Alaska Landscape. Alaska Geographic Association. Pg. 66.
Information on the properties of glacier ice, formation, deformation, and movement: Hambrey, M. and Jurg, A. 2004. Glaciers, 2nd Edition. Cambridge University Press.
Cavities at the base of glaciers have been measured to contract and seal as fast as 25 centimeters per day: Lefeuvre, J. and Lappegard, H. 2015. Interannual Variability of Glacial Basal Pressure from a Twenty Year Record. Annals of Glaciology. V. 56. No. 70.
Ages of glacial stades in Katmai: Hults, C. P. and J. Fierstein. 2016. Katmai National Park and Preserve and Alagnak Wild River: Geologic Resources Inventory report. Natural Resource Report NPS/NRSS/GRD/NRR—2016/1314. National Park Service, Fort Collins, Colorado.
Fifty percent of AK Peninsula is glacially derived, Aleutian Islands would begin a scant 300 kilometers from Brooks River: Detterman, R. L. 1986. Glaciation of the Alaska Peninsula. Pg. 151–170 in T. D. Hamilton, K. M. Reed, and R. M. Thorson, editors. Glaciation in Alaska: The geologic record. Alaska Geological Society, Anchorage, Alaska.
The best modern analogs for the shape and behavior of the ancient Naknek glacier may be Malaspina and Bering glaciers: I was first introduced to this comparison in Reihle, J. 2002. The Geology of Katmai National Park and Preserve. Publication Consultants.
Depth of Naknek Lake basins including Iliuk Arm: The exact depth of Naknek Lake is unknown. The estimates are based on sonar readings on boats in Naknek Lake; personal communications with Troy Hamon, Katmai’s Chief of Cultural and Natural Resources; and an unpublished lake bathymetry map provided by Chad Hults, geologist with the National Park Service, Alaska Regional Office.
Rock Flour:
Ben, D. I. 2009. Glacial Sediments, Pg. 382 inV. Gornitz, editor. Encyclopedia of Paleoclimatology and Ancient Environments. Springer.
Nichols, G. 2009. Sedimentology and Stratigraphy, 2nd Edition. Wiley-Blackwell. Pg. 107.
Friction in the water column allows [rock flour] to remain in suspension for months: As far as I know, this has not been empirically tested. However, Iliuk Arm retains its vibrant, turquoise hue even in winter when Savonoski River runs clear and flow out of Ukak River is at a bare minimum.
Visibility in Lake Brooks and Iliuk Arm: Moore, C. and J. Shearer. 2011. Water quality and Surface Hydrology of Freshwater Flow Systems in Southwest Alaska: 2010 Annual Summary Report. Natural Resource Technical Report NPS/SWAN/NRTR—2011/428. National Park Service, Fort Collins, Colorado.