Fishers Return to North Cascades

On an uncommonly sunny day in early February, I stood in a tract of old-growth forest not far from the Suiattle River to watch a missing mammal return to the North Cascades. With the return of the fisher, this area is one step closer to whole.

The fisher (Pekania pennanti) is one of the largest North American weasels. Adult females weigh four to six pounds and measure about 30 to 36 inches long, including tail, when fully grown. Males are about 20% larger, growing upwards of 13 pounds and nearly four feet long. Despite the name, fish are not a primary prey. Instead, fishers are wolverines of the forest. Highly arboreal, cylindrical in shape, and agile in motion, they are formidable predators of rodents, rabbits, hares, grouse, and other small to medium-sized animals.

fisher running to escape a box, people standing behind it

One of the first fishers to be released on February 6. The common name, fisher, is probably a modern English language corruption of “fitch,” a Middle English term for the pelt of the European polecat (Mustela putorius), also known as the common ferret. Not coincidentally, the colonial Dutch fisse and visse as well as the French fiche and fichet, all words for the polecat, sound quite similar to fisher. (NPS Photo)

Fishers were functionally extirpated from Washington by the mid 20th century due to habitat fragmentation and, especially, unregulated trapping. Surveys in the 1990s and early 2000s failed to find evidence of any viable fisher populations. As a first step to recover the species in the state, a coalition of public agencies, tribes, and private organizations released fishers in Olympic National Park from 2008-2010. This was followed by similar efforts in Gifford Pinchot National Forest and Mount Rainier National Park from 2015-2017. The North Cascades National Park Service Complex and Mount Baker-Snoqualmie National Forest began to host the fisher’s return last fall, which is how I found myself standing in the woods with about twenty other people on February 6.

Fishers prefer mature forests with a high canopy, relatively large diameter trees, and an abundance of downed trees. Dead standing trees are particularly important to fishers, as they den exclusively in tree cavities. The release site for the fishers this day seemed particularly well suited to their needs.

forest and stream

Fortunately and conveniently, healthy populations of fishers remain in British Columbia and Alberta and they serve as the source for the restoration effort. Fishers from western Canada are also genetically similar to those that used to inhabit Washington. Canadian trappers were paid to capture live, healthy animals. The Calgary Zoo temporarily housed the fishers while veterinarians evaluated their health and surgically implanted tiny radio transmitters to assist biologists in tracking them.

Twelve hours before release, these particular animals were still in Calgary. At 1 a.m., the fishers were flown to Abbotsford, British Columbia where they were picked up by biologists and driven into Washington. By early afternoon, a gang of biologists and a few interested souls like me were unloading the cargo and carrying the fishers a short distance to the release site.

Fisher release, Buck Creek Campground, Mount Baker-Snoqualmie National Forest_02062019_4

Fishers were transported in specially designed crates. Two fishers, separated by a partition, are in each crate.

view through screened hole of fisher in a box

A fisher peeks through a window toward the outside world.

people carrying wooden crates on forested path

Our group formed a semi-circle around the crates to watch the release. Conversations quieted to a whisper or died in anticipation as the crates were opened one at a time. To coax them out, a screened vent was opened at the top and a volunteer blew a puff of air into the container. I’m unsure if this was as annoying as someone blowing air into my ear, but the trick worked. The fishers shot out like a flash and bolted into the forest.

Six fishers were released that day bringing the total number currently released in the area to 24. The release efforts will continue until about 80 fishers are reintroduced to the area. Biologists will track, monitor, and study the animals to assess survival rates, identify where they go after release and where they establish home ranges, the types of foods they eat, and the diseases and parasites they suffer from.

The effort has a high chance of success. Reintroductions, however, are rarely so simple. Fishers, although not well known among the general public, are relatively non-controversial animals. They don’t evoke the same emotional reactions in people as grizzly bears or wolves, for example.

More than that, however, the forested habitats along the core and margins of the North Cascades are largely intact. Land managers needn’t take extreme, expensive, time-consuming measures to restore the ecosystem to a point where it could support fishers again. It could always support them. We just didn’t allow fishers to survive here.

Because prior generations had the foresight to protect places like North Cascades National Park and Glacier Peak Wilderness, we have the opportunity to restore fishers to land they once knew as home. Situations like these are becoming increasingly uncommon. People have fundamentally altered so much of the Earth to preclude the reintroduction of many extirpated species into their historic ranges. (There’s no substantial habitat available for bison in Iowa, for example.)

view of old growth forest with large coniferous trees

Potential future fisher habitat along Stetattle Creek in North Cascades National Park.

As humanity’s footprint grows, undeveloped landscapes are increasingly valuable, not for the resources we can exploit within them (including supposedly non-consumptive uses like solitude), but as repositories of biodiversity and ecosystem health. To adapt an idea from Thoreau, future generations, I believe, will measure our legacy not by what we invented and consumed, not by our material wealth, but by what we can afford to let alone.

I’ll probably never see any of these fishers ever again. Even if the population increases to hundreds of individuals, they’ll remain reclusive neighbors. If I’m lucky, I may find a track in fresh snow or its scat on a log. But even that doesn’t matter. I’ll know they are there and I’ll know the landscape is healthier because of it. The return of the fisher represents, at least in one small way, the success of our ability to let one place—North Cascades—alone.

Happy Birthday Bear

Across much of North America, tucked within isolated dens, a new generation of bears is beginning their lives.

Mother bears spent much of the last year preparing for this event. Although the timing varies among species and individuals, North America’s bears mate in late spring and early summer. The fertilized eggs, however, do not immediately implant in the uterus, undergoing only a few cell divisions before they enter a state of arrested development. During this process of delayed implantation, the female goes about her business while embryos remain in suspended animation. Implantation and fetal growth renew only close to the time she enters her winter den. Afterward, bear fetuses gestate for 6 – 8 weeks.

The gestation time is remarkably short for such a large mammal, and it produces especially tiny and helpless cubs. Brown bear cubs, for example, weigh a scant pound and measure only 8 – 9 inches long at birth, about the size of a beagle puppy. They are also born blind, lightly furred, and nearly immobile. Their ears are closed and their muzzles are short with a round, toothless mouth. Newborn cubs are so underdeveloped and small that they cannot maintain their own body heat in the den and must remain in contact with their mother to stay warm. About the only thing they can do is scream, which, not unlike human newborns, they employ frequently to gain their mother’s attention. It’s hard to imagine large adult bears so helpless, but they all start life this way.

Three small cubs held in a person's hands.

Newborn black bear cubs. U.S. Fish and Wildlife Service photo.

The small size of newborn cubs is surprising for animals that weigh several hundred pounds when fully grown. Generally, larger mammal species have longer gestation periods and give birth to larger offspring than smaller mammal species. African elephant calves gestate for nearly two years and are born bigger than elk calves; elk calves gestate for about eight months and are born bigger than deer fawns; deer fawns gestate for seven months and are born bigger than fox kits; etc. But, bears break the rule by a considerable margin. Bears give birth to the smallest offspring in comparison to adult female body size of any mammal.

Cubs are only 1/200th the size of even the smallest reproducing female grizzlies and commonly 1/500th or less for large adult brown and polar bears. In contrast, newborn human babies are an order of magnitude larger than bear cubs. A 10 pound child born from a 150 pound woman is 1/15th the size of its mother (yeah, I know that’s a big baby but the math was easy). Additionally, offspring born to large mammals are generally precocial, i.e. they are at least somewhat and sometimes highly mobile soon after birth. Bear cubs, however, are more akin to helpless hatchling birds or pinky mice. There is no parallel among placental mammals—only marsupials give birth to offspring as undersized as bears.

But why are bear cubs born purposefully premature? Why not just have a longer gestation time and birth larger, more independent cubs? The short gestation period and the relatively small size of bear cubs at birth both appear to be an adaptation to maximize the use of fat.

Bears are the only mammals that give birth while hibernating, a time when they do not eat, drink, urinate, or defecate. Survival during this time is dependent on stored body fat, but the paradigm poses a problem for expectant female bears. A developing mammal fetus cannot metabolize free-fatty acids, perhaps because these substances do not cross the placenta as readily as sugars and protein. So, as long as a bear tries to sustain fetal growth through her placenta, she needs to draw energy from her own body protein. Fetuses also produce bodily waste, which is transferred to the mother and adds to her physiological challenges. To cope, bears evolved an alternative strategy, one that allows her to give birth while hibernating, support the continued growth of cubs, and keep the family safe.

Unlike in the womb, baby mammals can metabolize fat shortly after birth and milk is the vector to deliver it. Bear milk is a particularly rich and nourishing substance. Brown bear milk, for example, is about 22% fat by volume. Polar bear milk is even richer, a whipping cream composed of over 30% fat. By shortening the gestation period, mother bears trade placental nourishment (mostly protein and sugar) for mammary nourishment (mostly fat) and tap into the one resource they have in abundance.

fat brown bear exiting water

Female bears utilize their fat reserves to support the growth and nourishment of their cubs.

On a diet of fatty milk, a brown bear cub can gain about a 1/5 of a pound of body mass per day, weighing about 5 pounds when one month old and 15 – 25 pounds by 90 days. Not coincidentally, this is about big as they would be if gestation was of an “expected” length like other placental mammals. The den, therefore, becomes a surrogate womb, protecting the family during the most vulnerable time in their lives.

Two polar bear cubs standing at the entrance to a snow den.

Polar bears play at the entrance to their mother’s den. These cubs are probably several weeks old. U.S. Fish and Wildlife Service photo.

Bears face many obstacles to survive and reproduce, not the least of which is winter famine. Hibernation provides bears with the ability to outwit winter by surviving on accumulated fat, but during this time a female bear must support the growth of her cubs with nothing more than the energy stored in her body. Given the challenges posed by gestation, hibernation, and winter famine, the birth of a bear represents a remarkable and unparalleled feat of mammalian adaptation.

So, happy birthday brown bear.

Hair Ice is Doped for Beauty

Late one frosty morning, I paused my walk to admire ice crystals that had grown from a small branch lying on the ground. Delicate and lacy to the extreme, the ice had a silky and well-kempt appearance. The formation was gorgeous.

silky ice, parted neatly in curls, growing out of dead wood

This was my first glimpse of hair ice, a phenomenon that originates in a surprising way.

If you live in a temperate climate that experiences hard frosts, you might be familiar needle ice. Even though it forms on frosty nights, this type of ice isn’t frost because it doesn’t condense out of the atmosphere. According Dr. James Carter of Illinois State University, it forms instead from in water in soil through ice segregation, a process when “above freezing and below freezing temperatures are juxtaposed. At the Earth’s surface this is most common in fall at night as the air cools to below freezing while the land surface stays relatively warm.” As ice forms on the soil surface, liquid water is pulled up from below through capillary action and freezes to the existing ice. This forces the ice to grow away from the freezing surface. The process stops when the temperature becomes cold enough to freeze everything up, the temperature rises above the freezing point of water and everything melts, or the soil surface becomes too dry.

Hair ice however, forms under even more specific, and perhaps unusual, circumstances. Like needle ice in soil, hair ice needs air temperatures just below freezing and a water saturated substrate. Unlike needle ice though, hair ice forms only on wood, specifically the dead and bark-free wood of broadleaf trees. Why only on dead wood?

silky looking ice growing out of dead woodsilky looking ice growing out of dead woodSee more photos of hair ice on iNaturalist

In 2015, researchers from Germany and Switzerland published a very interesting (and highly readable for a scientific paper) study titled, “Evidence for the Biological Shaping of Hair Ice.” Through repeated observations and laboratory experiments, they confirmed that the biological action of a winter-active fungus, Exidiopsis effuse, is required to enable the growth of hair ice.

Looking at the cross section of a small branch, wood rays radiate from the center of a branch like spokes on a bicycle wheel. From these rays, hair ice threads emerge and grow perpendicularly from the wood surface. The thickness of individual hair ice stalks corresponds to the diameter of the wood ray channels. Perhaps for the first time in my life, I could visualize the true scale of these cellular channels.

But this doesn’t explain how the ice maintains its shape. Threads of hair ice are extremely thin, sometimes .02 millimeters in diameter or smaller. Yet, they can grow to be 20 centimeters long (that’s 1,000 times longer than it’s thickness!) and maintain their shape for days. Normally, ice this fine couldn’t retain its shape for so long. It would recrystallize into larger crystals quickly at temperatures near freezing.

While the chemical process that preserves its fine and delicate structure is not fully understood, it seems that the ice, according to the 2015 study’s authors, is “doped” into maintaining its shape by fungi. Samples of melted hair ice contain lignin, tannins, and other compounds. Lignin cannot be digested by animals, only by fungus and some bacteria. It’s presence in the water, therefore indicates fungal activity. (We can thank fungi that forested habitats aren’t buried in dead trees.) The lignin and tannins might act as a crystallization surface for the ice and the fungi might help to initially shape the ice as it forms at the surface of the wood rays.

When researchers applied fungicide or hot water (90-95˚C) the hair ice wood for several minutes, hair ice formation was suppressed for many days. Instead of hair ice, an simple ice crust formed on the wood. This indicates that hair ice formation is somehow catalyzed by fungal activity and that high temperatures inhibit the activity of Exidiopsis effusa.

Since I first observed it, air temperatures have been too warm in my neck of the woods for hair ice to reappear. Given its ephemeral nature and remarkable delicacy, I’ll be sure to search for it once the temperature drops again. If I find it, I’ll surely be astonished by ice that was—in a sense—doped by a magic mushroom.

Francis Beilder Forest

Tucked away in a section of Four Holes Swamp, a tributary of the Edisto River in South Carolina, lies a pocket of remarkable forest. Currently owned and managed by the National Audubon Society, Francis Beilder Forest protects the largest virgin bald cypress and tupelo swamp remaining in North America.

silhouette of large bald cypress tree surrounded by other treesBald cypress (Taxodium distichum) is a deciduous member of the cypress family (Cupressaceae), which includes juniper, white-cedar, arborvitae, incense-cedar, Sequoia, and redwood. Like hickory trees, however, bald cypress shed their pinnate leaves each fall and grow new leaves in the spring. This characteristic inspired their common name since the trees are “bald” for at least part of the year. The species is long-lived and its wood is rot resistant. Recently, cypress logs dating back 25,000 to 50,000 years have been uncovered from sand quarries along the Pee–Dee River.

Visiting the Beilder forest is easy, requiring only the ability to traverse a level, 1.75 mile-long boardwalk. Walking into the forest, I could immediately see this was a special place.

black water swamp in winter with reflections of trees in waterBald cypress swamps experience seasonal flooding, and when I visited in mid December the forest was covered in a blanket of tea-colored water stained brown by tannins. The day was relatively warm and temperatures reached above 60˚ F. A few turtles and snakes took the opportunity to climb out of the water and sun themselves on fallen logs. My attention, however, was consistently drawn to the canopy and the craggy tops of centuries- and millennium-old bald cypress trees.

silhouette of large bald cypress treeBald cypress is one of the longest-lived trees in North America and the longest-lived tree in the eastern U.S. The oldest known tree at Beilder is nearly 1,600 years old. Along the boardwalk, you can find a 1,000-year giant, which outwardly looks healthy enough to stand another thousand years. (I asked the Audubon staff if I could see the 1,600 year-old tree and to my delight it could be found along the boardwalk. But, I won’t disclose its exact location since the staff would like to avoid making it a target for vandals.)

silhouette of large bald cypress tree

A thousand year-old giant in Francis Beilder Forest. This tree grows adjacent to the boardwalk and is identified by a sign.

At Beilder, many trees are massively trunked, resembling the silhouette of giant sequoia. Above their basal swell, they barely seem to taper until their branches splay outward in the canopy.

silhouette of large bald cypress tree; tree is surrounded by a boardwalkWhen you live to be over 1,000 years old you’re bound to acquire a scar or two. Reaching over 100 feet high, each bald cypress carries a legacy of the battles with insects, fire, and severe weather like thunderstorms, tornados, and hurricanes.

crown of large bald cypress with broken branch

Some time ago, a large branch broke off of this tree, perhaps allowing carpenter ants an easy means of entry. Larger holes in the same branch are the work of large woodpeckers like pileated woodpeckers. One hundred and fifty years ago, ivory-billed woodpeckers would’ve inhabited this place too. Could some of these woodpecker holes be from this extinct bird?

top of trunk of hollow bald cypress tree

The charcoaled interior of this large bald cypress preserves a moment in time when it was struck by lightning and burned.

Collectively and individually, these trees tell a fascinating story, if we are willing to listen. Maybe the most poignant of those, from my perspective, is loss.

I marveled at the trees at Francis Beidler, but I marveled at a fragment. Their longevity and physical proportions might only be remarkable because we’ve eradicated nearly all other bald cypress of the same size and age. Francis Beidler Forest is one of the few places where old-growth bald cypress trees still exist. According to one estimate, over 42 million acres of bald cypress forests once covered the southeastern United States, an area nearly the size of Missouri. Now, only 10,000 acres remain, equivalent to .02% of the original bald cypress forest! The rest was logged for lumber, furniture, and shingles with no forethought for future generations who may find great value (monetary or otherwise) in healthy ecosystems or for the species who depended on this habitat.

Through uncontrolled hunting and the loss of old-growth forests like bald cypress swamps, we drove the Carolina parakeet and ivory-billed woodpecker to extinction. Knowing what we consumed in the past, understanding that we continue to cause extinctions and change the climate today, can we ethically expand our footprint on Earth? How much extinction does it take before we say enough is enough?

The trees at Beilder felt the pounding of the ivory-bill and heard the calls of parakeets. Perhaps they were even enveloped by passenger pigeons, a species once so abundant in North America that their flocks extended for miles and blackened the skies. The air in this forest used to ring with the echoes of these birds. When we lose forests, we lose much more than trees.

 

My Live Bearcam Broadcasts in 2018

This was a busy year on the bearcams, courtesy of explore.org and Katmai National Park. We hosted more live broadcasts this  year than any other year since the bearcams first went live in 2012.

During play-by-play broadcasts Katmai rangers and myself narrated the Brooks River’s wildlife activity, much like broadcasters for sporting event (although the lives of brown bears and salmon is no game). We never knew what might happen during a play-by-play. Watching the prolonged posturing between two of Brooks River’s largest adult males, 856 and 32 Chunk, on July 12 and integrating the ranger’s radio traffic into the September 17th broadcast are two of my favorite play-by-play moments.

The other broadcasts, live chats, typically focused on a specific topic such as bear fishing styles, hibernation, and bear research at Brooks River. Rangers Andrew LaValle and Russ Taylor from Katmai joined me as frequent co-hosts for live chats and I was also fortunate enough to speak with many special guests. Perhaps the most memorable moment from these broadcasts occurred when bear 132 and her spring cub almost stepped on Ranger Andrew and I during our Katmai centennial live chat on September 24.

If you enjoy these, then please watch many other broadcasts hosted by Katmai National Park rangers and staff on explore.org’s education channel on YouTube.

 

Stuff I wrote in 2018

I was busy on a keyboard this year, even though there were long gaps between posts on this site. In case you missed them, here are the posts that I wrote for explore.org in 2018. They are listed in the order they were posted. My personal favorites include “How does a bear family breakup,” “How many salmon will a bear eat,” “Bearcam live chat surprise,” and “Living with Bears in Churchill.”

  • Brooks River Bear Mating Season: In June, food isn’t the only thing on a bear’s mind.
  • 2018 Bearcam Stories: 503: Emancipated from his adopted mom in the spring of 2016, bear 503, also known as Cubadult, has quickly grown into an energetic and often playful young adult.
  • Early June at Brooks Falls:  Standing at the falls from early to mid June is an exercise in patience and an opportunity to reflect on the changes soon to come.
  • 2018 Bearcam Stories: The Elders of Brooks River: Their longevity of Brooks River’s oldest bears demonstrates a level of individual success few bears achieve.
  • The Mouth of Brooks River: The lower river cams provide expansive views, colorful sunrises and sunsets, as well as the opportunity to see many yearly and seasonal changes.
  • What to Look for 2018: The Bear Hierarchy: Watching the ebb and flow of the hierarchy allows us to at least partly understand the conflict and challenges faced by bears.
  • Bear 856: On Top Again: Bear 856 appears to be big enough and healthy enough to show the river’s other adult male bears he’s ready to compete once again.
  • Death of a Bear Cub at Brooks River: As the smallest and most vulnerable of all bears, first year cubs (also called spring cubs or cubs-of-the-year) face significant risks and challenges, not the least of which are larger bears.
  • Dumpling Mountain Hike: Rising over 2000 feet above Brooks River, Dumpling Mountain offers anyone a quick escape from the hustle and bustle of Brooks Camp. Each time I hike on it, I get an opportunity to see the land in a new way.
  • Four Cubs for 402 Again: No matter this family’s fate, we can marvel at 402’s determination to follow her maternal instincts in an attempt raise another generation of Brooks River’s bears.
  • How Does a Bear Family Breakup? Until somewhat recently, I stated that 402 had “abandoned” her yearling (now known as 503). While this might be true in a sense, I no longer think that this is an accurate way of describing the event. After reading more about the emancipation process, I’ve come to believe 402 didn’t abandon her yearling in 2014. She emancipated him.
  • How Many Salmon will a Bear Eat? We often observe bears partake in marathon fishing sessions at Brooks Falls, so how much can they eat in a day or season? Quite a lot.
  • Salmon on the Underwater Bearcam: The calmer, deeper water near the outlet of Brooks River provides salmon with a temporary refuge that is relatively safe and costs them little energy.
  • 451 and Her Yearlings: 451 is currently raising her second litter, and it’s easy to see that the family is skinner than many of the other bears on the bearcams.
  • Bearcam Line of Sight: Where are the bearcams and where, specifically, do they look?
  • Brooks Falls Trail: Simply walking to Brooks Falls can be an exciting and memorable experience and allows great opportunities to explore a changing habitat.
  • Mid Summer Change at Brooks River: Are fewer bears at Brooks River a sign of change?
  • An Exceptional August: Regarding bear activity at Brooks River, August 2018 has been exceptional.
  • Fishing By Snorkeling: Efficient and effective, snorkeling is one of the best strategies to scavenge fish.
  • Can a Bear be Too Fat? When you see bears whose stomachs appear to drag on the ground, one wonders if a bear can grow too fat for its own good.
  • Bearcam Live Chat Surprise: “This being a live broadcast it’s entirely possible…a bear could walk through the screen at any time. So if we have to exit or end the broadcast abruptly that’s probably why.”
  • Fat Bear Week Quarterfinal Preview: The competition just keeps getting bigger.
  • Mike Fitz’s Favorite Bearcam Moments of 2018: Here are a few of my favorite bear cam moments for 2018.
  • Evidence of Rapid Change in Katmai: the Ukak and Savonoski Rivers spill across a broad, 1.5-mile wide delta. In a landscape often defined by change, this is one of the most dynamic places in Katmai National Park.
  • 2018’s Top Ten Bearcam Moments: the people have spoken! Bearcam viewers have chosen the top ten bearcam moments of 2018. Each moment is unique and significant for a different reason.
  • Living with Bears in Churchill: The confluence of bears and people in this remote community has created a special set of challenges, which can only be met through the town’s willingness to tolerate the largest four-legged predator on Earth.

Vote on Climate

In my last post, I explored the origins of an alpine lake in North Cascades. The news cycle was especially terrible the day I wrote it, so I decided to leave out details about the causes and consequences of glacial retreat in North Cascades. But honestly, the causes and consequences are too great to ignore. It is no small irony that my insight and enjoyment into the formation of an alpine lake was inadvertently provided by people through human-caused climate change.

All glaciers in North Cascades are retreating and they’ve collectively lost over 50% of their mass during the last 100 years. This is directly due to a warming climate, a product of burning fossil fuels like coal and oil.

before and after photos of glacier.

Banded Glacier in 1960 (left) and 2016 (right) in North Cascades National Park.

Unless you’ve been living under one of those glaciers for the past century, you might’ve heard there’s an election next week and voting has begun in many states. While casting our votes, we have an opportunity to elect representatives who will work to mitigate climate change. But, we shouldn’t vote to combat climate change just because glaciers are receding in North Cascades National Park.

We should act on climate, because glacial melt water moderates summertime drought. Millions of people depend on glaciers for drinking water.

We should act on climate to lessen the risk from extreme weather events like drought, hurricanes, floods, and heat waves.

We should act on climate to ensure supplies of fresh water are not overly taxed by humanity’s increasing demands. Who wants reliable access to clean fresh water? All of us.

We should act on climate to help reduce the spread of invasive species, many of which are finding easier footholds where ecosystems are already stressed and fragmented.

We should act on climate to prevent the loss of arctic sea ice, a habitat that helps cool the planet by reflecting sunlight into space, forms the basis of a complex polar food web, and is one necessary for the survival of polar bears.

We should act on climate so coastlines aren’t flooded by sea level rise.

We should act on climate to mitigate ocean acidification, which can impact marine food chains. A lot of us eat seafood and even if we don’t, we like animals that eat seafood (whales, bears, etc.). What would Katmai National Park, my favorite place, be without abundant salmon? An impoverished place, that’s what.

I could go on, but I think you get the point.

We have a moral responsibility to stave off the worst climate change impacts, because this is a human-caused issue. Collectively we can do it, but we have to take the threat seriously. We, as a nation, didn’t vote to combat climate change during the 2016 election. Thankfully, we have another chance now, but time is running out to slow and eventually halt what is one of the most pressing issues facing humanity. That’s why I’m voting for initiatives to mitigate climate change and only for candidates who take climate change seriously.

photo of Washington State ballot showing yes selected for Initiative 1631

In Washington, Initiative 1631 would authorize the first carbon tax in the U.S. This is my ballot.

I’ve been fortunate enough in my life to explore active glacial environments in many parts of North America. In Katmai, I’ve walked on pumice-covered glaciers to reach volcanic calderas, numbed my feet in icy glacial runoff, and eaten freshly calved ice (if you’re wondering, it was clean tasting but a little gritty). In the North Cascades I explored the margins of the region’s still active ice. To find an advancing glacier in modern times, however, is rare. Melting glaciers are one of our most conspicuous symbols of global warming.

Glaciers have come and gone in the past, of course. I grew up in a region of Pennsylvania where Ice Age glaciers terminated their last advance, leaving behind eskers and sand quarries. I lived near Lake Chelan, a remarkable inland fjord carved by glaciers. Katmai was also completely overrun by ice. Modern glacial retreat is different though, because we’re the primary cause. Climate change isn’t a hoax or some deep-state conspiracy. It’s real, it’s here, and humans are causing it. There is no scientifically plausible alternative theory that explains the changes to Earth’s climate observed since the Industrial Revolution.

I still find beauty in the ice, but each time I see a glacier I also am reminded of one of Aldo Leopold’s many maxims,

“One of the penalties of an ecological education is that one lives alone in a world of wounds. An ecologist must either harden his shell and make believe that the consequences of science are none of his business, or he must be the doctor who sees the marks of death in a community that believes itself well and does not want to be told otherwise.”

The community is not well, because we’ve wounded it. Let’s step up and act. When you vote, only vote for those who take climate change seriously and, more importantly, will actively work to reduce its impact. The status quo got us here, but the status quo is no longer good enough.

The Origin of an Alpine Lake

Despite the area’s formidable topography, the North Cascades are filled with lakes. On a hike late last summer, I glimpsed how many of them formed.

Monogram Lake sits in a small basin perched a few thousand feet above Cascade River. At this elevation, just shy of 5,000 feet above sea level, it’s surrounded by blueberry meadows and scattered woodlands of mountain hemlock and Pacific silver fir. It’s an inviting place to camp for a couple of nights, no matter if you want to lounge by the lakeside or strengthen your quads further by climbing to the surrounding ridges.

small lake surrounded by meadows and mountains

I hiked there late last August hoping to watch black bears feeding on blueberries. The blueberries were reaching peak ripeness when I arrived, but I found no black bears or even any fresh bear sign, so instead of relaxing at the lake I decided to explore the surround terrain and take in some of the iconic alpine views that make the North Cascades so famous.

Not having a specific destination in mind, I was free to wander. These are my most favorite hikes, when I travel more to see what might lie in front of me instead fixating on a pre-determined destination.

Bushwhacking around the lake, I passed through quiet sedge-filled wetlands…

sedge meadow and small pond in mountain basin

…stopped frequently to eat blueberries…

blueberry plants with ripe blueberries

…wandered over a gently sloping boulder field…

meadow and boulder field looking up to a mountain ridge

…to a glacier tucked in a pocket just south of Little Devil Peak.

small, mostly snow free glacier tucked in a basin below a mountain peak

Here, I ate my lunch while contemplating the scene. It was a near perfect analog for the formation of the Monogram Lake basin.

Glaciers form when snow is compressed into mostly air-free ice and attains enough mass to deform and flow. Under the influences of gravity, ice deformation (high pressure within a glacier causes deeply buried ice to behave plastically), and lubrication from water at the its bed, glaciers move along the paths of least resistance. Due to their mass and size, they become powerful agents of erosion. They entrain rock, sand, and anything else as they flow. Forced along by moving ice, rocks at a glacier’s bed are especially erosive. Glacial erosion mills rock so effectively that much is pulverized into a microscopic powder called rock flour. This is the substance that gives glacial runoff it’s milky appearance and can color lakes turquoise.

Where ice had only recently receded at this particular glacier, the bedrock recorded plenty of evidence of the glacier’s past movement.

hiking pole lying on bare rock. Rock shows faint horizontal striations.

Many faint striations were scored into the bedrock near the glacier. The striations run roughly parallel to the hiking pole.

concentric gouges in metamorphic rock

Chatter marks are small, crescentic grooves formed in bedrock by rocks frozen in ice. The rocks chip the glacier’s bed as they are forced forward. The convex face of the marks point in the direction of movement.

Since glacial erosion is most pronounced at a glacier’s base, if topography forces ice through a pinch point then it causes the glacier to carve the underlying land more deeply and quickly than at the glacier’s sides, a process called overdeepening. As ice retreats, overdeepened basins often fill with water. This is the origin of fjords and deep lake basins as well as cirques high on mountainsides.

Monogram Lake occupies a cirque, a half open and steep-sided valley or basin on the side of a mountain. Instead of a clear lake surrounded by meadows, it was once filled with ice just like the basin below Little Devil Peak.

View looking toward a lake in a glacial cirque. Deep valley and snow covered peaks on horizon.

Monogram Lake

view of glacier in mountain basin. Snow covered mountains on horizon.

The glacier south of Little Devil Peak as seen from an unnamed peak above Monogram Lake.

Uniformitarianism is a geologic principle that, in sum, means the key to interpreting the past is to understand processes that occur today. Excluding the three hydroelectric reservoirs in the Skagit Valley, glaciers carved the basins for nearly every lake in North Cascades National Park and Lake Chelan National Recreation area. Even though I wasn’t around to see Monogram Lake emerge in the wake of glacial retreat, all the evidence I needed for this process was right before me.

Fat Bear Week 2018 Endorsement

Last October I wrote, “There are small and fat bears, old and fat bears, young and fat bears, and just plain fat bears. But none, NONE I say, are as fat as 747.” A year later, 747 continues to demonstrate his survival skills and success at Brooks River. He’s big enough and fat enough to once again earn my official endorsement for Fat Bear Week 2018. 747 is titanic, a giant among bears.

GIF of large, dark brown bear walking down a steep hill

Bear 747 is an adult male in the prime of his life. First identified as a subadult bear in 2004, he’s matured into the largest bear I’ve ever seen.

 

But don’t just take my word for it. Bear 747 is endorsed by several of his competitors at Brooks River.

bear lying on ground

“Look, we’re all fat right now, but no one is as fat as 747. Seriously, his belly nearly drags on the ground. Even I never achieved that level of pudge. “ Bear 410

profile of bear walking along edge of river

“I keep my distance from him because I’m concerned he’ll roll on top of me.” Bear 68

402_07062016

“I’m still in awe of his size. Can he even dig a den big enough to fit within?” Bear 402.

bear with blond ears and blond coat standing in water

“Even though I’m in the Fat Bear Week bracket, I still might vote for 747. It’s the logical vote. He probably weighs at least three times as much as me.” Bear 719

profile of brown bear standing on edge of waterfall

“747 is a role model of fat bear success. I hope to be as fat as him one day.” Bear 503

bear sitting in water below waterfall

“I’m too hungry to comment.” Bear 480 Otis.

Many people who have observed 747 closely also agree with the endorsement.

bear lying in water facing photographer

“He’s all business—fishing and eating. Nobody gets fat like 747.” Jeanne R., former Katmai National Park ranger.

Too much fat is unhealthy for humans, but fat is essential to the survival of brown bears. It is a savings account against famine. Without ample fat, bears do not survive hibernation. In spring, often a season of starvation for bears, females with cubs will metabolize fat into milk to nurse their growing cubs, and adult males will use their fat to fuel their pursuit of mates.

747 won’t be rearing any cubs next spring as male brown bears play no role in raising offspring. During a season when almost no high calorie foods are available to bears, 747 will use his fat to roam the landscape for mates instead.

Other bears might be more charismatic or tug on your heartstrings, but 747 truly is a giant among Brooks River bears. He deserves your vote for Fat Bear Week 2018.

Katmai Fat Bear Week Bracket 2018 Fitz choices.png

My 2018 Fat Bear Week bracket predictions.

You are encouraged to vote for Brooks River’s fattest bear on Katmai National Park and Preserve’s Facebook page. Starting on Oct. 3, park rangers will post head-to-head matchups between well-known bearcam bears. The bear whose photo receives the most likes will advance to the next round, until one bear is crowned fattest bear on Fat Bear Tuesday, October 9th. Don’t forget to watch Katmai’s fattest bears on bearcam.

 

 

 

A Mountain Lion Prowls the Neighborhood

There’s a place along the Skagit River where I like to wander. Upstream and downstream, the river is lined with rural home sites, but in between there’s a small pocket of undeveloped land where relatively few people go. Compared to the wild lands surrounding nearby Mount Baker and the North Cascades, it’s a small area and nothing close to what most people would consider wilderness. A regenerating clear cut sits on a terrace above the water. Below it, the river flows through a shallow S-curve and a swampy area occupies the annual floodplain. Filled with a willow thicket, it’s a good place to hide, for me as well as many other animals.

I’ve made it a habit to explore the animal trails leading in, out, and through the floodplain. In the spring, when the water table is higher, Pacific tree frogs spawn in ephemeral pools. In fall, a black bear visits the riverbank to scavenge spawned-out salmon. All year, elk use it to move between pasture. I frequently see sign left by coyotes, and if I look hard enough I might be able to find the tracks and scat of bobcats. While I rarely see the live animals, exploring their haunts helps keep me connected to the other creatures that I share this place with. I have a spot within this area where I like to sit and listen, but sometimes the most interesting observations happen upon my approach and exit into this little pocket of wilder land.

Following an elk-maintained path down to the riverbank, I exited the forest onto a muddy side-channel, now mostly dry after a long, arid summer. The exposed mud and sand of late summer offer some of the best tracking opportunities of the year. I slowed my pace, eager to see which animals had moved through the area recently. In the semi-firm mud, I stumbled upon a set of feline tracks. The tracks were large, as wide as the palm of my hand with four clear toe prints. There were no claw marks and the sizable metacarpal pads were distinctively three-lobed at the base. These belonged to a mountain lion.mountain lion tracks in mud. Notebook is approximately 7 inches wide.mountain lion track in mud. track point towards right. Notebook is approximately 7 inches wide.mountain lion tracks in sand. tracks point towards notebook at bottom of photo. Notebook is approximately 7 inches wide.Curious to know more about its travels here, I followed the tracks along the edge of the river. The cougar followed the same general path I would have to move upstream; it stuck to the mud and driftwood on the edge of the willows. From the additional tracks I was able to find, the cougar continued along the riverbank for another hundred yards before I lost the trail in the adjacent thicket.

Based on my completely unscientific survey of mammal sign in the surrounding few acres, elk seemed to be the most abundant large animal here. They left many sets of tracks that moved perpendicularly from the river and into the deep cover provided by the willows. Was the lion stalking potential prey, or was it simply wandering through? Could a kill site be nearby? My imagination ran with the possibilities, but the dense vegetation would effectively hide any further evidence of the lion’s travels—unless I was lucky enough to stumble upon more sign.

Discounting that possibility as too unlikely, I left the river by following a narrow elk trail lined with salmonberry. The trail led, in a convoluted manner, to my sit spot where I sat for while to jot a few written notes and listen to the forest.

forest scene with taller trees in background and many small shrubs in foreground

To head home, I took a different yet familiar route along more elk trails. By this time, I wasn’t expecting to find any more sign of cougars (the duff was too well compacted and dry to hold their paw prints), but when I reached a fork in the trail I found evidence that at least one cougar had visited the area several times. Under low hanging branches of western red-cedar were four large scrapes. Each scrape was oblong and about a foot in length. Each had a small pile of debris at the base and three were accompanied by scat.

photo of mountain lion scrape in forest litter. notebook at bottom left is about 7 inches wide.photo of mountain lion scrape in forest litter. notebook at bottom left is about 7 inches wide.

Mountain lions are reported to urinate when they make scrapes, but I couldn’t detect any strong urine odor despite kneeling down for a better waft. Evidently, the cougar had been here several times, but not that day and perhaps not even the past week. It looked to be eating well when it was here though. One pile of scat was sizable and reflective of a diet heavy with meat.

I found no other mountain lion sign that day, but the scrapes and tracks caused my mind to again race with the possibilities of its life here. Did it make a kill nearby? Or, was it merely using the heavy cover as a secure place to rest between meals? I left with more questions than answers. This mountain lion’s story might be missing some pages, but sometimes the finer details of a good tale are best left to the imagination.