If you poop in the woods, does a ranger clean it up?

A recent article in The Guardian (‘Worst work in the world’: US park rangers grapple with tide of human waste) got me thinking. There’s a dirty side to your national park experience and it doesn’t get talked about enough.

The Guardian article is short and worth reading (h/t to blog reader Rebecca F. for alerting me to it). It focuses on Rocky Mountain National Park’s effort to deal with human waste in alpine areas where the volume and lack of decomposition creates health hazards and pollutes water. Along the route to Longs Peak in Rocky, the National Park Service installed new toilets that separate urine from solids and, purportedly, lessen the workload and hazards for rangers. It’s a big and expensive effort to contain something we all do naturally.

While the ranger life is often romanticized in various ways, that friendly park ranger you meet on the trail could very well have been on their way to checking a seldom maintained privy or have just finished cleaning an unpleasant mess from the trailside. Rarely do we give much thought to what happens after we flush a toilet or use an outhouse in a park.  With visitation in many national parks continuing to increase, more and more seemingly remote reaches of parks experience significant human waste issues.

For most of my adult life, I worked as a park ranger at several different national parks. And, if you’re a ranger you are bound to deal with poop at some point, sometimes often. I’ll spare you the details of my dirtiest national park human waste story (pro tip: avoid the handrails in Carlsbad Cavern). Yet, I want to take the opportunity to discuss what a backcountry ranger might deal with during their day on a trail. Take a short journey with me to North Cascades National Park.

view of mountain scenery with craggy peaks and snowfields.

In 2017, I was fortunate enough to work in North Cascades, one of the more rugged national parks in the contiguous 48 states. Once every two weeks, I was assigned a three to five night backpacking route through the park and adjacent national recreation areas to assess trail and campsite conditions, make minor trail repairs, check to see that people complied with park rules, and generally ensure that people were having a good experience. I enjoyed those trips, especially the evenings when work was finished and I could relax at a secluded campsite looking at trees and watching for wildlife.

North Cascades is cherry-stemmed with a well-maintained, extensive trail network and almost every trail is dotted with a few backcountry camps. The luxuries of each camp vary—some are little more than a dirt tent pad—but one thing you can count on is some sort of toilet.  Except at boat-in sites and some high elevation camps, most are simple privies consisting of a box over a hand-dug hole in the ground.

A toilet box in a forest.
A privy box sits above a too large hole at Fireweed Camp in North Cascades National Park. Once filled to capacity a ranger or, more often, the trail crew digs a new hole nearby and moves the box seat over it or replaces it with a new one.

Checking toilets was a frequent duty on the trail. I would glance into every backcountry privy and assess its condition, which meant I looked into a lot of toilets during a typical multi-day trip. Most didn’t need attention, thankfully. Yet I always approached slowly, mentally prepared to encounter unpleasant conditions in need of remedy.

Along Brush Creek at the isolated Graybeal Camp—on the third day of a five day hike that previously included stirring a composting toilet and bagging up human waste deposited inappropriately on the surface of the ground adjacent to a tiny stream—I arrived to find the privy nearly full to the brim. Faced with such situations, there are various tricks one can use to increase a privy’s capacity. For example, a ranger I knew would use using a long, stout branch to knock over the cone of feces and toilet paper deeper into the privy hole at a heavily used site, perhaps prolonging the need to dig a new hole for a couple of weeks. In this case at Graybeal though, there appeared to be no room at the inn.

Graybeal Camp is lightly used compared to more popular destinations like Ross Lake, Cascade Pass, Sahale Arm, and Copper Ridge. Only a few weeks remained in the hiking season when I arrived in late August and many feet of snow would soon bury the camp for the winter. But this camp needed a new privy hole and I couldn’t in good conscience pawn the problem off on another ranger.

I located the trail crew’s cache of tools at a nearby group site and prepared to dig a new hole and move the toilet to it. That is, until I realized there was a risk of disturbing something I shouldn’t.

The places we call national parks were never unpeopled and areas that we consider good campsites today were also likely to have been used by indigenous peoples. I didn’t know if park archeologists had inventoried the campsite for artifacts or even assessed the potential for them. The last thing I wanted to do was disturb an archeological site for a lowly hand-dug privy hole.

After I confirmed with the backcountry office that archeologists did not clear the site for digging, I needed another plan. The tool cache had a roll of fiberglass tape. I carried a re-sealable plastic freezer bag, some paper, and a pencil. So I wrote a note closing the toilet “due to limited capacity,” placed it in the bag, and taped it over the toilet hole.

Was this a satisfactory solution? Not at all. I had, unfortunately, pawned the work off to other park staff. But, it kept people from pooping on the ground* and the toilet at the group campsite was relatively close, so the risk of human waste proliferating everywhere was minimal.

A toilet box with a note taped over the hole.
*People were, in fact, pooping on the ground. Unbeknownst to me (I had not been to that campsite before), the trail crew later discovered that a flash flood had washed the toilet off its hole and placed it directly on the ground in the forest. What I thought was a mound of human waste extending a few feet into the earth was merely a foot tall mound of human waste sitting on sandy outwash.
late day sun on craggy mountain peak and clouds
Alpenglow on Whatcom Peak as seen from Graybeal Camp.

Privies work well at relatively low elevation, forested sites if use isn’t heavy and moderate levels of decomposition can work its magic. But what to do in places that are too dry, too cold, too rocky, or too well trodden to for a traditional privy to work?

That’s the issue that Rocky Mountain National Park rangers deal with on the route to Longs Peak, and why they chose to utilize a new toilet design. Still, I am aware of no backcountry toilet that doesn’t require some maintenance. When the vaults on the toilets at Longs Peak are full, then the waste must be flown out by helicopter. Many other high-elevation backcountry toilets require more labor.

There are many backcountry sites within North Cascades where a simple privy won’t work, so for many years the park has used a type of above-ground composting toilet.

A vault-like toilet sits in a forest
A compositing toilet at Pelton Basin.

For these to work well, though, the toilet can’t be used too frequently, the contents can’t get too wet with urine or precipitation, the dry-matter to human waste ratio can’t skew too much toward feces, and they should be stirred regularly to promote composting. A full toilet requires someone to shovel the contents into a drum that can be flown out by helicopter.

Dealing with composting toilets was one of the more unpleasant tasks during my time in the backcountry. Excessive moisture often prevented composting, so they were often filled with a festering sludge. After a trial-by-fire experience stirring one for the first time, I found that slow, deliberate movements as well as covering as much of my skin as I could were necessary safety precautions when maintaining this style of toilet. There is a real risk working around a vat of human feces, especially when you are more than a day’s hike away from the trailhead.

N95 mask held by hand in latex glove
Long sleeves? Facemask? Disposable gloves? Some sort of eye protection? Check.
Selfie of ranger wearing NPS hat, black coat, and N95 mask
Ready to stir. Remember the days when N95 masks didn’t need to be rationed? Good times.

I’m not complaining about the toilet work. Because, honestly, looking at a few turds each day isn’t that bad in the scheme of things. I’d do it again without complaint, accepting it as a necessary duty so that less human waste pollutes our parks. People gonna poop and the urge doesn’t always strike us at convenient times or places. However, as visitation continues to increase in many national parks, the burden and hazards of human waste grows too, in both easily accessible places as well as remote backcountry locations.

If you visit a national park (and, really, consider postponing your trip while COVID19 rages), you could personally thank the park staff for the work they do to. However, a more rewarding thank you would be to do your part keep wild areas and parks clean.

North Cascades was long considered a hidden gem of a park; one in which you could go on a summer weekend and find a place to camp fairly easily. Since its establishment in 1968, however, the population of Washington State has more than doubled. Mountaineering, hiking, skiing, and backpacking are more popular than ever. Millions of people live only a two to three hour drive from Washington’s iconic national parks and national forests. These destinations, however, operate with essentially the same number of campsites that they did in the 1970s. The North Cascades park complex (including Ross Lake and Lake Chelan National Recreation Areas) is no longer a place where you can expect to easily find a campsite on summer weekends. Finding a campsite is even becoming increasingly difficult on weekdays.

As we approach and exceed the carrying capacity of developed areas of parks,  then increasing numbers of people spill into areas that have been traditionally off the beaten path. We bring our waste and waste issues with us. National parks, forests, and other recreational areas are increasing challenged to meet the demands posed by current levels of visitation. Turds included.

A Victory for Bristol Bay

Much of my hair fell out this year, perhaps due to stress from, you know, everything, or just being a male human of a certain age, but in the midst of all else one thing that definitely did not help was the continued threat of large scale open pit mining in the headwaters of Bristol Bay, home to the world’s last great salmon run.

Read the Backstory: Bristol Bay at Risk

For about 20 years, the prospect of Pebble Mine has loomed over Bristol Bay and the communities who depend on its salmon for their livelihood. The most recent mine proposal, a scaled-back version of previous plans, would have been one of the largest surface mines in the world. According to the Army Corps of Engineers, the mine would remove 1.4 billion tons of material, and irreparably alter more than five square miles of currently undeveloped tundra and wetlands. The open pit will gouge almost 2,000 feet into the earth and stretch over a mile and a half wide—a hole so deep the Washington Monument could be stacked on top of the Empire State Building and not reach the original land surface. A 500-foot tall earthen dam would be built to hold waste rock and other tailings. All of this was proposed for a site at the headwaters of the Nushagak and Kvichak rivers, two of the most productive salmon producing watersheds on the planet.

In late July, the Army Corps released its final environmental impact statement (EIS) on the mine. While the EIS was not the final word on the mine, by most accounts it seemed favorable. In August, however, as I was trying to prepare myself mentally for the disappointment and anger I would have felt had the mine been approved, the Army Corps issued a press release stating that Pebble Mine “as currently proposed, cannot be permitted under section 404 of the Clean Water Act.” The Corps required Pebble Limited Partnership to provide a new mitigation plan to offset the mine’s impacts on streams and wetlands before it could receive a federal permit. In a letter to Pebble Limited Partnership, the Corps stated “discharges at the mine site would cause unavoidable adverse impacts to aquatic resources and . . . those adverse impacts would result in significant degradation to those aquatic resources.”

In early November, Pebble Limited Partnership submitted a new mitigation plan. But, it failed to satisfy the Army Corps. On November 25, 2020, the Army Corps issued its record of decision on the proposed mine and denied a permit for it. The Army Corps wrote that the mitigation plan was noncompliant with Clean Water Act guidelines, was insufficient in scope to overcome the damage the mine would do to the landscape, and that the mine was “contrary to the public interest.”

I was elated to read the Corps had reached this conclusion. In my public comments on the Army Corps draft Pebble Mine EIS, I had in fact called for the Army Corps to deny a permit for the mine partly because it was contrary to public interest.

The cheapest, most feasible, and most environmentally ethical decision is to conclude this mine poses unacceptable risks to Bristol Bay—specifically the Nushagak and Kvichak watersheds—reject the mine alternatives, and choose the no action alternative for the final EIS. This is well within the Corps’ legal authority: “No Action Alternative could be selected if USACE determines during its Public Interest Review (33 CFR Part 320.4[A]) that it is in the best interest of the public, based on an evaluation of the probable impacts of the proposed activity and its intended use on the public interest.” (Ch. 2-8)

There is no doubt the no action alternative is in the best interest to the public. We have so little to lose by leaving the ore at Pebble Mine in the ground and so much to gain by protecting it for current and future generations. The decision is clear. The only acceptable alternative proposed in the DEIS is the no-action alternative. Do not permit this mine to be developed. 

While campaigning for the US presidency, Joe Biden stated that he opposed the mine. His election along with the Army Corps’ decision during the final weeks of Donald Trump’s anti-conservation administration serves as a death knell for this iteration of Pebble Mine. However, the ore remains on State of Alaska lands open to mining. Mine executives and investors will continue to ogle it. Even as the current Pebble Mine proposal is killed, a new version may rear its ugly head in the future. We came closer than ever before to sacrificing the last great salmon run along with the regional economy and ecology dependent on it.

Now, we must work ensure that this unique landscape is permanently protected from development that is incompatible with salmon. Because mine permit applications can be resubmitted, Bristol Bay’s salmon remain under threat.

The United Tribes of Bristol Bay has called for Congress to establish a Bristol Bay national fisheries area. It would provide federal “protection for the watersheds of Bristol Bay, Alaska. It must permanently ban any toxic mine waste from the proposed Pebble Mine and large scale projects like it that would harm Bristol Bay rivers, lakes and wetlands.” The effort has already gained support from the Seattle Times, Commercial Fishermen for Bristol Bay, Alaska Audubon, and the Natural Resources Defense Council among others.

I wholeheartedly support this proposal. Congress and the State of Alaska should work together to permanently protect all of Bristol Bay’s headwaters from development that is incompatible with the protection of salmon. We’ve sacrificed freshwater salmon habitat for mining, irrigation, hydropower, roads, industry, and plain convenience nearly everywhere outside of Alaska and Bristol Bay. Meanwhile, climate change will make it harder for salmon to survive in places where runs already struggle. We and the ecosystems who depend on healthy salmon runs pay the price when they don’t return, and it’s a lot more expensive and difficult to restore salmon runs than to protect healthy runs in the first place.

Salmon are valuable for more than food and aesthetics. As conveyors of energy and nutrients from the sea, salmon enrich freshwater and terrestrial habitats. Ecosystems are more productive and wildlife more abundant in areas with healthy runs of wild salmon. Bristol Bay salmon support tens of thousands of jobs and the well being of the people who call the area home.

In the meantime, what can you do to help? If you have the time, write to your congressional representatives and urge them to permanently protect Bristol Bay. If you eat salmon, be sure to purchase salmon that is sustainably sourced (if you buy wild Alaska sockeye salmon, it’s very likely to be from Bristol Bay). And share the wonders of the Bristol Bay region with your friends and family.  While explore.org’s bearcams in Katmai National Park are offline for the winter, even the cam highlights show an ecosystem working at its full potential. It’s hard to not feel awe and wonder at the sight of bears competing for the opportunity to catch salmon.

On a societal level, 2020 hasn’t produced many celebratory occasions. We remain in the midst of a pandemic, one that is raging more than ever. Climate change hasn’t slowed one bit, and this year is on track to be one the warmest on record. The extinction crisis is worsening. Plus our partisan and political divisions are deeper than at any other point in my lifetime, hampering our collective ability to resolve these issues.

Stopping Pebble Mine now is significant and a cause for celebration. It underscores that we value clean water and sustainable fisheries.

But the fight isn’t over. Given the poor state of North American salmon outside of Alaska, with collapsed runs existing at small fraction of historic highs, Bristol Bay should be our line in the sand. It is the last great salmon run left on Earth and it cannot be compromised.

The Bears of Brooks Falls: The Book

I first traveled to Brooks River within Katmai National Park in early May 2007, and today it’s hard for me to imagine my life without it.

On the morning of my first flight to Brooks Camp (which is only accessible by boat, plane, or a very long, boggy, buggy, and rough cross-country hike), fellow rangers and I hauled our clothing, equipment, and months of food to the floatplane docks along Naknek River in the small town of King Salmon, a sprawling community surrounding an airport and mothballed U.S. Air Force base. We were excited and enthusiastic to begin the adventure, but few of us, I believe, truly understood what we were getting ourselves into. I certainly didn’t. Not quite a greenhorn when it came to wild areas, I had never experienced a landscape like this.

Immediately after takeoff, I gazed out the window of our small plane, my eyes transfixed on what many people would describe as nothing. King Salmon’s few houses, roads, and infrastructure quickly yielded to tundra and scattered spruce trees. This was land devoid of permanent human habitation. Cross hatching animal trails led to unknown destinations. I saw wildly meandering creeks, too many ponds and lakes to count, and a horizon bounded by unnamed mountains.

After twenty-five minutes of flying, the pilot landed smoothly on Naknek Lake’s calm surface, and we taxied to an empty beach in front of the few scattered buildings marking Brooks Camp. With the help of fellow staff, I hurriedly unloaded and stashed my gear inside a nearby tent frame cabin and began to settle in.

Later that evening, Jeanne, my then girlfriend and now wife, and I returned to the beach. I had just finished a winter job at Death Valley National Park, where daily temperatures had already risen above 100˚F, but Brooks Camp looked like winter couldn’t decide to stay or go. Leaves had not broken bud, thick blankets of snow clung to the mountains, and the underground water pipes to our cabin remained frozen. I walked wide-eyed, trying to take in the totality of the scene—the turquoise color of Naknek Lake, the snow-capped mountains, the pumice-strewn beach, a set of bear prints in the sand—when Jeanne waved her arm toward the horizon and remarked, “This is spectacular.”

I don’t recall if I responded or not. Doesn’t matter, because she was right. I had never looked upon land so empty yet so full.

Katmai and Brooks River are unlike any other place. But relatively little has been published about the bears, salmon, and humanity that intertwine at the river. In 2014, I first imagined an idea of writing a book about Brooks River and its inhabitants. In 2016, I began to work on it in earnest and this year I finished the manuscript. I’m pleased to announce my book, The Bears of Brooks Falls: Wildlife and Survival on Alaska’s Brooks River, is available for pre-order. It ships out in March 2021 via Countryman Press. In eighteen chapters, the book strives to explore the ecology of the river’s famed brown bears and salmon as well as the complex relationship people have with the place.

Part one focuses on the colossal eruption of Novarupta Volcano in 1912 and the discovery of the Valley of Ten Thousand Smokes. This event reshaped the area’s history and led to the establishment of Katmai National Monument in 1918, a time when the national park idea was still fledging.

Today, Katmai is most famous for its brown bears. Part two is devoted to their lives and the salmon the bears depend on to survive. I explore the marvel of the hibernating bear from a den on Dumpling Mountain, discover the river from a cub’s perspective, and follow the tribulations and growth of young bears recently separated from their mother. The brown bear mating season provides the chance to learn how bears compete during one of the most important times in their lives. Writing about the bear hierarchy, I consider how this social structure provides advantages to bears who live in an unfair world. Katmai’s brown bears experience hunger in a profoundly different way than people. They must eat a year’s worth of food in fewer than six months to survive hibernation. Their feeding choices and habits reflect highly tuned adaptations to take advantage of summer’s ephemeral bounty. And, the poignancy of a cub’s death, one witnessed by thousands of people on the park’s webcams, provides the chance to reflect on the end of a bear’s life.

Few organisms are as important to an ecosystem as salmon are to Katmai. Leading Odyssean lives, sockeye salmon face tremendous obstacles and challenges. From fresh water to the ocean and back again, they travel thousands of miles, running a gauntlet of predators to fulfill their destiny. Weakened by their freshwater migration and subsisting without food for weeks, the journey of Brooks River’s sockeye ends when they sacrifice their lives to reproduce. They are the ecosystem’s keystone, driving the river’s abundance and significance.

In part three, I examine modern humanity’s influence over Brooks River. Humans may be the river’s biggest ecological wildcard. Climate change looms large over the land and seascapes, and people alter the behavior of the bears that make the scene so special. The infrastructure needed to support thousands of visitors and their recreational activities invite conflict with bears. Managing bears and people in such a small area is especially challenging, provoking a decades-long and often emotional debate about the river’s future.

The Bears of Brooks Falls: Wildlife and Survival on Alaska’s Brooks River is an exploration of brown bears and salmon in one of the Earth’s last fully intact ecosystems. It’s an honest and deep dive into issues surrounding the role people play in the riverscape and Katmai National Park. And, I’m so excited for you to read it, and I hope you’ll consider adding it to your bookshelf.

2020 Fat Bear Week Endorsement

In a year of heightened political polarization, there’s one candidate that rises above the rest. He’s a candidate for greatness. A candidate for change. He campaigns on a platform of success, skill, efficiency, and hard work. He is known simply as 747 and he deserves your vote for Fat Bear Week.

Large brown bear seated in shallow water.

Seven-four-seven is a titan, a tank, and a giant among bears. Holly might pledge a “salmon in every paw,” but 747 pledges just to eat salmon.

Seven-four-seven’s size is legend. At the Brooks River, few bears approach his size class, and as a result he has consistently ranked among the river’s most dominant bears. His measured size even surprised me, however. Through a novel use of terrestrial laser scanning technology, he was estimated to weigh more than 1,400 pounds in September 2019. This summer he appears to be at least as large, but I suspect he’s even bigger.

A bear can’t get this big without eating a lot of food, and Brooks River provides 747 with ample opportunity to get fat. Brooks River is part of the Bristol Bay watershed, an area that supports the last great salmon run on Earth. While salmon runs throughout much of North America struggle to cope with the combined impacts of impassible dams, incompatible land-use changes, and climate change, Bristol Bay continues to support tens of millions of salmon each year. Almost 58 million fish collectively returned to Bristol Bay in 2020, and the salmon run in the Naknek River watershed was exceptional. More than four million sockeye swam up the Naknek River between mid June and late July. The Naknek drainage may have supported the largest single salmon run on Earth this year. About twenty percent of those salmon–maybe 800,000 fish–entered Brooks River.

At Brooks Falls, 747 sat or stood waiting for his meals to come to him. He consistently capitalized on the vulnerability of salmon in the shallow, bubble-filled water. For a winter hibernator like 747, an individual who must eat a year’s worth of food in fewer than six months to survive, efficiency is a valuable trait to express.

Some pundits have called my support for 747 unwavering. Yet, I’m always on the lookout for a better candidate. This year, however, I’ve failed to find evidence of another Fat Bear Week contender that is fatter than 747. Whether you look at fatness as a proportional measure of body size or just through overall size, 747 has both bases covered.

A police department in Colorado even mistook 747 for a large boulder the size of a small boulder.

One person [who I am married to but will go unnamed] has maybe jokingly called me the “worst campaign manager ever,” because my candidate never wins. She might be correct. Despite my prior lobbying efforts, 747 has yet to win Fat Bear Week. Over the last several years, 747 has been snubbed by the voting public who viewed competitors like Otis, Lefty, Beadnose, and Holly as proportionally fatter.

But mark my words, dear readers. This is 747’s year. Cast your Fat Bear Week vote for the bear who shares an identification number with a jet airplane.

GIF of Hulk Hogan and other wrestlers signaling "for life" with hand signals.
Fat Bear Week 2020 bracket. It lists six bears on the left and six on the right. The logos at the bottom represent explore.org, Katmai National Park, and the Katmai Conservancy.
Here are my 2020 Fat Bear Week bracket predictions. Download your own 2020 Fat Bear Week bracket on fatbearweek.org and vote in the tournament from September 30 through October 6. Watch the bears on explore.org.

Early September Bearcam Questions and Answers

This blog has been relatively dark over the last year, not because I hadn’t intended to write for it but because I frequently had other writing duties to fulfill. Afterward completing one task, it was often easier to space out at the end of the day than concentrate on writing something that approaches partial intelligence.

I want to share a little of what I have been writing though. Each Tuesday, I cohost a question and answer session in the comments on explore.org’s Brooks Live Chat channel. It’s an AMA about anything related to Katmai National Park’s bears and salmon. Many people submit your questions in advance, which allows me to answer them with greater detail than a question asked on the spot. Below are my answers to those questions during the Q&As for early September.

Be sure to join the Q&A every Tuesday from 5 -7 p.m. Eastern in the Brooks Live Chat channel, and if you prefer to chat in sentences limited to 200 characters, then join the bearcam conversation on explore.org’s Brooks Falls YouTube feed.

September 1, 2020

I’d like to talk about the “Beaver Pond,” which Kathryn asked about via the Ask Your Bearcam Question form. “I’ve often looked at photos of the [Beaver Pond] and wonder if any salmon can make it to the pond and if any of you have seen bears fishing or hunting around the pond?”

The “Beaver Pond” is located about fourth-tenths of a mile south of the outlet of Brooks River. A road provides an avenue to get near there although there is no developed trail to the pond’s edge. Bears use the area but mostly as part of their efforts to get to and from Brooks River because the pond is inaccessible to salmon.

The Beaver Pond in relation to Brooks River
A beaver at the Beaver Pond

Beavers maintain a lodge on the pond’s north side and a grass-covered dike (an old beaver dam) lines much of that area. But, the Beaver Pond isn’t a true beaver pond in the sense that its formation was the direct result of beavers. It was once part of Naknek Lake and has since been cut off by the sediments deposited by wind driven waves.

The beaver pond was once a cove on the edge of Naknek Lake. Strong easterly winds create waves that erode the gravel shoreline to the southeast of Brooks River. The waves carry gravel and sand northwest toward Brooks River. Over time, a horsetail shaped beach began to encircle the cove.  This image below is from an unpublished geologic report about the Brooks River area. Note the concentric ridges along the lakeshore near the beaver pond. These are the beach ridges that cut off the beaver pond from Naknek Lake.

This process is similar to what we see at the river mouth, especially in the “spit” area that partly encloses a lagoon-like area rangers call the boat cove. The boat cove may be destined to become a small pond or marsh like the wetlands between the river mouth and the beaver pond today, although the mouth of Brooks River is more exposed to direct blows from wind-driven waves than the beaver pond area. Strong storms can quickly rework and reshape the gravel at the river mouth.

In the above image, the parallel lines farther inland are old beaches as well, although they weren’t formed by longshore currents. Instead, they mark the former levels of Naknek Lake and Lake Brooks. Naknek Lake has been slowly lowering in elevation as Naknek River cuts through the glacial sediments that dam the lake.

Although we don’t know exactly what the Brooks River mouth area will look like in the future, we definitely know it will not look the same.

Jen wrote in wondering about the line-up of salmon we sometimes see below the river watch cam and asks, “Has that behavior been noted before?” And, “What criteria initiate egg-laying?”

This is the formation that Jen refers to.

Parallel lines of sockeye salmon in Brooks River. The fish are facing upstream and in this image the current flows from right to left.

Sockeye salmon line up in fairly parallel rows frequently in late summer in the lower Brooks River. Until this year, however, with more salmon using the channel below the river watch cam, we haven’t been able to see this on the cams very well. Although this is not a new phenomenon at the river, I haven’t been able to find an explanation for it. We know the salmon are staging (waiting for the right time to spawn) but I don’t know if lining up in rows gives them any sort of advantage. It may be the most efficient way to sort themselves or there could be some social cue among the fish that prompts the formation. It’s a beautiful feature of the lower river in late summer.

Regarding Jen’s second question, a female salmon lays her eggs in nests she constructs by fanning the gravel with her tail. This action winnows away fine sediments that might hinder water flow (and hence dissolved oxygen) around her eggs. She’s looking for gravel of the right size and in areas of the river with consistent water flow. Males will fan the gravel occasionally too but they play no role in nest construction. Once the female determines her nest is suitable and she’s accompanied by a suitable male, she’ll release her eggs directly into the nest while the male releases his milt. In this way, it is the female who determines when to lay eggs.

LoveTheBears writes, “I understand that there is an area designated for cleaning any caught and kept fish.  What happens with the discarded fish parts?”

There used to be a public fish-cleaning building at Brooks Camp. The first iteration wasn’t much more than screened-in shelter with a bucket on the floor where people disposed fish entrails. It was later replaced by a more substantial log cabin style building where people could clean their fish. Today though, there is no public fish cleaning facilities at Brooks Camp and the public is prohibited from cleaning fish within 1.5 miles of Brooks Falls. People can keep one fish per person per day downstream of the bridge, but they must take it immediately to the Fish Freezing Building (the old fish cleaning building) and place it in a freezer. It must remain there until you depart Brooks Camp.

Although no bears at Brooks River are currently conditioned to seek human food, it hasn’t always been this way. In the 1960s and 1970s, many bears learned to associate people with food and sought opportunities to get at human foods at Brooks Camp. The fish cleaning buildings were part of the issue along with open dumps, outdoor burn barrels for garbage, and overall lack of awareness and regulations about proper food storage in bear country. As part of the effort to reduce the risk of bears becoming food conditioned, the NPS got rid of the public fish cleaning facility.

Bears easily learn and remember any trick that allows them to find food. Therefore, we must remain constantly vigilant to ensure that bears don’t learn to associate us with fish. The NPS and the State of Alaska implemented somewhat strict fishing regulations in the 1990s, which has greatly reduced the number of incidents when bears have learned to associate people with fish. Eliminating public fish cleaning facilities and prohibiting fish cleaning within 1.5 miles of Brooks Falls inconveniences some people but it is a big step toward protecting bears.

September 8

Angela writes, “We were talking about hibernation in the chat thread and wondered if it is necessary for bears to hibernate. We understand that bears at Katmai hibernate, but were wondering if bears in captivity also hibernate or if because there is a regular food source, the need to hibernate isn’t triggered?”

Hibernation exists along a spectrum rather than being an either/or behavior. Some mammals such as arctic ground squirrels are obligate hibernators, meaning they hibernate regardless of ambient temperatures or access to food. Bears experience a type of facultative hibernation. Given the right circumstances, bears needn’t hibernate to survive winter.

Each year, at least some black bears in mild climates (Sierra Nevada foothills, coastal plain of the southeast U.S., and Big Bend National Park to name a few) remain active all year. These are generally adult males. Similarly, a few adult male brown bears are active on Kodiak all year. Mild temperatures and at least some food allow these bears to remain out and about.

In North America, only pregnant female bears must enter a den and it isn’t because they must hibernate. Bear cubs are born so small and physically immature that they need many weeks of additional development before they are mobile enough to travel with mom. This is even true of polar bears who utilize the winter season to hunt seals on sea ice. Instead of heading out on to sea ice in early winter, pregnant female polar bears, just like all other pregnant North American bears, head to dens to give birth.

Although a handful of bears remain active all year, especially in more southerly populations compared to Katmai, hibernation is a bear’s best energy conservation strategy. It makes sense for nearly all bears to hibernate during winter when food is either very limited or non-existent. For those bears who stay active (other than polar bears), their metabolism and activity rates are much lower than summer. Winter activity, therefore, doesn’t mean that bears are as active as they would be in summer. So even captive bears may ignore food and water provided to them, relying more on their hibernative physiology to survive.

Erin asks, “747 is a huge bear. Is he the biggest bear seen at Brooks River? Have there been bigger bears in the past?”

As I’ve said and written many times, 747 is a giant of a bear. He is the most massive bear I’ve ever seen and we should not take his presence for granted. If 747 were to disappear from the river, it may be a long while before we see another as big as he. Last year, 747’s was estimated to weigh more than 1,400 pounds.

747 from Fat Bear Week 2019

Each year, there are comparably sized bears in Katmai and at Brooks River. I’ll start by listing three of the currently seen bears who approach 747’s size class and then highlight two who might have approached it in the past. Only the largest adult males are comparable.

Right now 32 Chunk, 151 Walker, and 856 are close to 747’s size (at least within 300 pounds or so). They certainly rival him when measured by height and length. Each of these bears seem smaller to me than 747, but looks can be deceiving. Size is also an important determinate of dominance in the bear world. It is not absolute though. While 747 is more dominant than Chunk and Walker, 747 consistently yields to 856.

32 Chunk from Fat Bear Week 2019
151 Walker from Fat Bear Week 2019
856 from Fat Bear Week 2018

In the past, Brooks River has hosted some very big bears. While I never had the opportunity to see Diver in person, he was reportedly extremely fat and large in his heyday during the 1980s and 1990s. Look at this photo as an example.

In 2007, the most dominant bear I saw at the river was 24 BB. He was very tall and long–so a massively framed bear. He didn’t use Brooks River in late summer though so we never got to see BB at his peak size for the year. BB behaved much like 856. He asserted his dominance frequently and spent less time fishing than 747 does today, so he might not have been as heavy as 747 but the potential was there.

BB in July 2007

Marlene writes, “856 is getting older. I am wondering if he will know when he no longer can hold the top spot or do you think there will have to be a confrontation?”

856 has been the river’s most consistently dominant bear since 2011. Like all bears, 856 is great at weighing risk versus reward. For him, the overall risk of confronting other bears is low and provides great reward in the form of access to food, fishing spots, and mating opportunities, because other bears recognize his dominance. 856 will use that to his advantage as long as he can.

His high level of dominance is tied to his health and fitness. He’s a large bodied bear so will remain relatively dominant no matter what but he needs to maintain his good health and fitness in case another bear challenges him or is unwilling to yield. 856 might fall from the top of the hierarchy if he is defeated in a fight by another comparably sized bear.

His reign as the river’s most dominant bear could end in another way though. He might not feel up to the challenge.

In July 2017, 856 was an infrequent visitor in July and when he did show up, he yielded easily to 32 Chunk, perhaps because he suffered from a leg injury that hindered his ability to compete with other comparably sized males. At the time, already after many years of dominance, I thought this was the end of 856’s reign at the top. I was wrong. 856 returned to the return to the river in September 2017 looking as healthy as ever and acting as dominant as ever. He hasn’t taken a step back since.

The chances of a repeat of July 2017 could be in 856’s future just as much as his defeat in an intense fight at the paws of another bears. If 856 continues to return to the river as he ages into his early and mid 20s, I think we’ll see at least one of those scenarios play out.

Mount Katmai Caldera

We found ourselves hanging over the brink of an abyss of such immensity that, as the event proved, we were powerless even to guess its size. Down, down, down, we looked until the cliff shelved off and we could follow it no further.

–Robert Griggs in The Valley of Ten Thousand Smokes describing the moment he first peered into Mount Katmai’s caldera

Standing on the rim of the Mount Katmai caldera, staring at the gaping hole where a mountain once stood, elicits a profound awe. At the caldera and across the Valley of Ten Thousand Smokes, the Earth’s power and ability to foment change is laid bare.

About a year ago, I disappeared into one of the most unique landscapes on Earth, the Valley of Ten Thousand Smokes in Katmai National Park, a trip I partly chronicled in a blog post for explore.org. I hadn’t specifically planned on ascending to the caldera rim on that trip, knowing that the weather along the crest of the Aleutian Range is fickle at best and an inviting window of opportunity may never materialize. When I woke at daybreak on June 10, 2019 to see a cloudless sky though, I left my base camp eager to reach one of Katmai National Park’s most spectacular features.

I slept the previous night at Novarupta, the lava dome that marks the eruptive center of the 1912 Novarupta-Katmai eruption, the largest eruption of the twentieth century and one of the five largest volcanic eruptions in recorded history. The lava dome represents the eruption’s last gasp, forming anywhere from days to months after the 60 hour eruption waned on June 9, 1912.

view of pumice-covered flats and snow fields dark-colored lava dome at center

Novarupta lava dome

I began walking not long after the first light of dawn cast a pink alpenglow on the surrounding volcanoes. The rivulets of snowmelt where I gathered drinking water the prior evening had run dry as overnight temperatures dropped below freezing. Thankful for the firm footing, however, I traveled quickly across frozen snowfields to the base of the Knife Creek Glaciers, a badlands of pumice-covered ice attached to the north faces on Trident and Katmai volcanoes.

view of snowfields and mountain peaks

Early morning light on Trident Volcano

Not one, but many meltwater streams pour from the snout of these glaciers, and the permanent channels have eroded deeply into the pyroclastic deposits that form the Valley of Ten Thousand Smokes proper. Finding places to hop over or ford these streams is straightforward, although tedious work as you climb in and out of their past and present floodplains. They can be crossed most safely within a few hundred yards or less of the base of the ice. Farther downstream, they create impassible gorges, akin to southern Utah’s famed slot canyons only filled with a torrent of glacially cold water.

view of pumice flat and small stream with ash and pumice covered glaciers in background

Lower sections of the Knife Creek Glaciers are a badlands of ice covered with as much as six feet of ash and pumice.

Compared to the scale of geologic time, Katmai’s volcanoes forced their way to the surface relatively recently. Over the last several hundred thousand years, upwelling magma buckled and fractured its way through thousands of feet of Jurassic-aged rocks, although these sedimentary layers have deformed little since they were deposited. The rock of “Whiskey Cleaver” a wedge of 150 million year-old marine sediments buttressing the north flank of Mount Katmai, are nearly as level as when they accumulated on the bottom of the seafloor.

The first time I reached the caldera in 2011, I stuck to the base of the cleaver, following the margin of the glacier to the west while hugging the exposed rock and glacial till until I needed to step onto the glacier leading to the caldera rim. This time while looking to avoid glacial travel as much as possible—dying alone, trapped in a crevasse seems like a horrible way to go—I chose a slightly more direct route up a steep ash and snow-covered slope slightly east of the main glacier. The sun had yet to soften the frozen snow as I ascended. I couldn’t kick sufficient steps into the crust, which forced me to avoid the steepest snowfields where I felt the risk of falling was too great. This turned into the diciest part of the route and was the one place that I wished I carried an ice axe.

View of hummocky landscape created by ash and pumice covered glaciers at the foot of mountains hidden in clouds. Blue line near center represents route.

I explored the termini of the Knife Creek Glaciers the day before my ascent to the caldera, partly to scout a way through the badlands. My approximate route through a corner of the Knife Creek Glaciers is shown in blue. The view looks east toward the caldera.

At the top of this slope, I reached a bench where the gradient lessened in steepness, kept me temporarily off the glacier, and away from areas prone to rock fall. From here, it was a simple task of avoiding the steep sidewalls prone to sodden late spring avalanches and the center of the glacier where crevasses are more likely to open in June. Not a single cloud hung in the sky, the air was dead calm, and the caldera was only two miles away.

view of mountains with vast snowfields with some small pumice-covered areas in fore and middle ground

The final two miles leading to the caldera

When the 1912 eruption began, Mount Katmai was a triple-peaked and glacially clad 7,600-foot tall volcano. Around midnight on June 7, 1912—in the midst of eruption’s most violent outbursts—Mount Katmai began to collapse. Over the next twenty-four hours, the summit fell inward, generating fourteen earthquakes between magnitudes 6 and 7.

No one witnessed the collapse. Thick ash replaced daylight with an inky blackness across the region. Not until the eruption ceased and skies cleared on June 9 could anyone see that the mountain had lost its top. Because Mount Katmai collapsed, for decades people considered it to be the source of the eruption. In a sense it is, but not from the perspective of explosiveness. Careful study of the eruption’s fallout and pyroclastic flow deposits in the Valley of Ten Thousand Smokes revealed relatively little originated from Mount Katmai. Instead, the vent that opened at Novarupta siphoned away its magma. Perhaps not coincidentally, the elevation of the caldera floor and Novarupta are nearly the same.

Human eyes would not look into the caldera until Robert Griggs and his expedition team slogged their way to the rim from the Pacific coast in 1916. While I enjoyed the advantage of ascending on clear snow with stable footing along with the fore-knowledge of how to get to the rim, Griggs clawed up the volcano’s still muddied and pumice-covered southern slopes, all-the-while pioneering his route, not quite knowing what he’d see or what challenges he’d face until he got there.

When Griggs reached the unstable and knife-edge caldera rim caldera, he found glaciers cleaved flush with the precipitous walls where several thousand feet of mountain once stood. Peering into the gaping earth, Griggs had difficulty comprehending the caldera’s scale, and he stared amazed at a horseshoe-shaped island of lava in a milky, robin-egg-blue lake deep within the bowels of the volcano.

panoramic black and white photo of volcanic caldera.

Jasper Sayer took this remarkable photograph of the Mount Katmai caldera in 1919. It had been seen for the first time only three years prior. I reached the caldera on the opposite side from this photo, near the low point in the rim at left.

From the sight lines along my route, the terrain provides no hint the caldera exists. Although the route’s gradient lessened the closer I got to the rim, the caldera appeared in sudden and spectacular fashion.

panorama view of Mount Katmai caldera on clear sunny day

During a 2011 ascent here, I was forced to retreat within 15 minutes by howling winds, a cloud ceiling which allowed on the scantest of peeks into the bowl, and the threat of snow. On this day though, I sat on the rim for more than two hours, attempting to embed the scene into memory. I couldn’t help but consider how ephemeral it was. The shallow lake first witnessed by Griggs has grown more than 800 feet deep and continues to rise. New glaciers hug the interior walls and calve small icebergs into the water. I watched avalanches of rock and snow tumble more than a thousand feet from the rim to the lake. Water discharged from hydrothermal vents at the bottom of the lake creates greenish-brown swirls with the deep blue of the lake’s surface.

Like the dozen-plus other volcanoes in Katmai, the mountain will churn with unrest again. Its next eruption is unlikely to be as large and landscape changing as the 1912 event, but Mount Katmai’s potential to unleash the power of the Earth remains ever-present. As I sat on the rim, looking at the hole where a several thousand feet of rock once stood, I enjoyed the long moments of calm, wonderfully alone with a mountain only temporarily at rest.

view of mount katmai caldera with steep snow covered cliffs at right and center
view of mount katmai caldera with steep snow covered cliffs at left and center

To learn more about the Valley of Ten Thousand Smokes, read Robert Grigg’s 1922 book about its discovery and exploration. Volcanologists Wes Hildreth and Judy Fierstein authored the authoritative text on the eruption’s geology in The Novarupta-Katmai Eruption of 1912—Largest Eruption Eruption of the 20th Century Centennial Perspectives. Lastly, I devote two chapters in my forthcoming book, The Bears of Brooks Falls: Life and Survival on Alaska’s Brooks River, on the 1912 Novarupta-Katmai eruption’s significance to the region and the creation of Katmai National Park. Look for The Bears of Brooks Falls late this year via Countryman Press.

A Step to Protect Brooks River’s Bears

Each year, the National Park Service in Alaska reviews compendiums for park areas and provides the public with an opportunity to comment on proposed changes or suggest changes. This year, Katmai National Park is proposing a change to its compendium that will give staff greater flexibility when managing the Brooks River area. If you value the river’s wildlife and the bear-watching experience at Brooks River, whether in person or through explore.org’s bearcams, then please support this change.

Visitation at Brooks Camp has skyrocketed to unprecedented levels during the last several years. In 2015, the last full summer I spent as a ranger at Brooks Camp, approximately 9,300 people attended the NPS bear orientation. In 2016, the number of orientations climbed to 10,900. By 2018, the number had grown to 12,500 and in 2019 it reached over 14,000, the highest visitation every recorded at Brooks River. This change may not seem like much (Yellowstone’s Old Faithful Visitor Center often receives over 10,000 people per day in summer). However, the Brooks River corridor is quite small. The river itself is only 1.5 miles long and during the busiest days in July over 500 people and a few dozen brown bears attempt to share its space. The increase in visitation and unrestricted access to the river has created an untenable situation that taxes park staff, facilities, the experience, and the bears’ ability to tolerate and adapt.

graph showing number of people attending bear orientations (y axis) by year (x axis). The number of orientations has doubled since the 2000s.

Attendance to mandatory bear safety orientations can be used as a proxy for overall visitation to Brooks Camp. In the last ten years, the number of people attending the orientations has doubled.

Related: Bears and Humans at Brooks River

Brooks River is a unique place within America’s national parks. In a landscape home to more bears than people, it is Katmai National Park’s most famous bear watching destination. However, it is perhaps the only area in Alaska that is actively managed as a bear-viewing destination yet has no restrictions on access. No permits or guides are required to visit. There is no limit to how many people can visit each day and almost no restrictions on where you can go when you get there. Arriving visitors are required to attend a mandatory bear safety talk that outlines the proper and expected behavior. After that though, you are largely free do go about your business. To help manage the situation, the National Park Service has proposed this change to Katmai’s compendium.

The Superintendent may prohibit activities, impose restrictions or require permits within the Brooks Camp Developed Area. Information on closures and restrictions will be available in the park visitor center. Violating [Brooks Camp Developed Area] closures or restrictions is prohibited.

The NPS lists several reasons for the proposed change.

  • High visitation and improper behavior by people has negatively impacted bears along the river corridor.
  • The park has received more complaints and concerns from the public regarding bear-human interactions.
  • Bears are changing how they use the river, so current closures are becoming increasingly inadequate.
  • Visitation has increased dramatically over the last several years.
  • To better manage the river corridor, the park needs more flexible management tools.

While the proposed change is no panacea for the challenges facing park staff at Brooks River, it can provide an important tool to manage changing situations. For example, it hypothetically allows the NPS to extend the closure around Brooks Falls beyond August 15 or even restrict human access in the lower river area when bear activity is high.

Quite often, proposals for greater restrictions and regulations in national parks attract more opposition than support, especially if the change has the potential to impact public access or business interests. Now though, we have the opportunity to let the NPS know this change is worthwhile and necessary.

Portions of Katmai’s bear population are equally sensitive to human disturbance as the grizzlies in Yellowstone, yet the only area in Katmai where people cannot venture is the immediate area surrounding Brooks Falls, and then only from June 15 to August 15. Since I came to discover Brooks River for myself in 2007, protections for bears have slowly eroded. In the face of skyrocketing visitation, the NPS has proposed a positive step to protect bears and the bear-watching experience. So please send the park a comment expressing your support for the change. Here’s an example to get you started (feel free to customize it as you see fit). You can download a copy of the proposed changes and submit comments on the NPS’s project website. The comment period is open through February 15, 2020.

PS: If you plan to visit Brooks Camp this summer or in the future, please consider subscribing to the Brooks River Pledge. It’s a personal pledge between yourself and Brooks River with the goal to emphasize respect for the bears’ space as well as ways to continue to have a high quality bear viewing experience.

Fat Bear Week 2019 Endorsement

Avoiding the news when your job is internet-based is like avoiding the flu when your entire household is infected. So, try as I might, I keep stumbling upon headlines about upcoming presidential primary elections. The big question on the minds of pundits seems to be, “Will people choose the candidate who best represents their values or the one who they think is most electable?”

As a certified bearcam aficionado and well-known Katmai National Park pundit, I am pleased to announce that I have do not have that issue, at least not for the upcoming “election” called Fat Bear Week. My candidate isn’t a compromise between values and electability. He’s the real deal, the one, the only, the titanic bear known as 747. He deserves your vote.

silhouette of fat bear sitting in river

Don’t you call me pudgy, portly, or stout. Just now tell me once again, who’s fat? (NPS photo of bear 747 by N. Boak)

Seven-four-seven is a giant among bears, an adult male in the prime of his life who uses his size to dominate access to his preferred fishing spots in the jacuzzi and the far pool. His experience and skill pay off each fall, supplying 747 with the substantial fat reserves necessary to survive winter hibernation without eating or drinking.

To get this fat, you need to catch and eat a lot of salmon. Adult brown bears on Kodiak Island consume can consume an incredible 6,146 pounds (2,788 kg) of salmon per bear per year! Given 747’s excellent fishing skills and ability to routinely access the most productive fishing locations at Brooks Falls, I have no doubt his salmon consumption is on par with the biggest Kodiak bears. Stuck in his own version of “feed”-back loop, 747 gets fatter and fatter until it’s time to enter the den. (And, no bears probably can’t get too fat.)

If you don’t believe me about 747’s qualifications, believe the Internet, always an impartial repository of truth and honesty. In 2017, I recorded a video of 747 in all his epic fatness. If anything can be gleaned from viewer comments (and of course we know that YouTube comments represent the highest form of public discourse), 747 is an extra THICC absolute unit who is ready to hibernate through two winters.

The people have spoken.

At Brooks Falls, 747 remains quite dominant and can often access any fishing spot he chooses, which is not surprising given his size. Adult males typically rank at the top of the bear hierarchy. Even so, 747 still faces competition, in real life and in Fat Bear Week. This summer, I was awestruck watching 747 clash with another adult male, 68, in an intense fight.

 

Sixty-eight emerged victorious in the battle, not only securing access to a preferred fishing spot at Brooks Falls but also assuring his dominance over 747. Bloodied from the fight, 747 left the falls area almost immediately and I thought I might not see him for the rest of the evening.

bear standing in water with some blood dripping from his lower lip

747 bleeds from the mouth after his fight with 68 on July 2, 2019.

Within an hour or so, he returned and began fishing like nothing happened. When you only have a few months to prepare for winter hibernation, there’s little time to waste.

Like so many things in life, 747’s Fat Bear Week victory is not guaranteed. My 2017 and 2018 endorsements for 747 were followed by his sound defeat. This year, his competition is just as fat if not fatter.

GIF of bear sitting upright and scratching an itch with her left front paw

Dear Holly,

Game on. See you in the Fat Bear Week finale!

Sincerely,
747’s Campaign Manager

Your Fat Bear Week vote can be based on any number of factors. You can consider a bear’s annual overall growth like that experienced by cubs and subadult bears. Perhaps you want to weight your vote toward bears with extenuating circumstances such as a mother’s cost of raising cubs or the additional challenges older bears face as they age. No matter what though, 747 once again offers you, the astute Fat Bear Week voter, the opportunity to support a bear who is both the fattest and the largest, two traits that are not mutually exclusive.

Complete your civic duty and vote for Brooks River’s fattest bear from October 2 – 8 on Katmai National Park and Preserve’s Facebook page. Look for the head-to-head Fat Bear Week matchups. The bear whose photo receives the most “likes” advances to the next round, until one bear is crowned fattest bear on Fat Bear Tuesday, October 8. Don’t forget to watch Katmai’s fattest bears every day on explore.org.

Fat Bear Week 2019 Bracket.jpg

My Pebble Mine Draft EIS Comments

As I’ve written before (here, here, and here) and commented on (here and here), Pebble Mine represents an unacceptable threat to Bristol Bay, home to the last great salmon run left on Earth. Through June 29, you can submit comments on the Army Corps of Engineers draft Pebble Mine environmental impact statement. I encourage everyone who cares about wildlife and wild places to comment. Tell the Army Corps of Engineers that this mine is unacceptable.

I also realize that not everyone has the time to read the draft EIS, which is huge, containing about 1,400 pages. So, I’ve copied my comments on the draft EIS verbatim below. You can also download a rich text file of the comments. I hope they inform your comments about Pebble Mine, the development of which would be a grievous mistake.

red salmon swimming in shallow water

Draft Pebble Mine Environmental Impact Statement Comments

I firmly oppose the development of Pebble Mine. The draft EIS (DEIS) fails to adequately address the mine’s short-term and long-term impacts. Additionally, its development would create several permanent hazards to the watershed, and the mine merely represents the first of many potential large-scale developments that will continually degrade salmon habitat in Bristol Bay. After reviewing the DEIS, I urge the Army Corps of Engineers to reject the permit application for Pebble Mine and select the no action alternative.

Permanent Mine Hazards

The mine and its infrastructure create several permanent environmental hazards. Two of these hazards, the open pit lake and tailings storage areas, are particularly concerning, because the DEIS does not provide adequate or convincing information on how these hazards can be contained indefinitely. For example, page 8 of the executive summary states,

“Pyritic tailings and PAG waste rock would be placed into the open pit for long-term storage below the pit lake water level. Once the material has been transferred to the open pit, the pit lake (i.e., the water that would accumulate in the open pit as a lake at closure) would continue to fill, and would be allowed to rise to the pre-determined control elevation threshold (about 890 feet). Once the level of the open pit lake rises to the control elevation, water would be pumped from the open pit, treated as required to meet State water quality standards, and discharged to the environment.”

This final stage of the open pit requires indefinite water treatment and discharge of water from the open pit. This is neither acceptable nor feasible in perpetuity since treatment facilities must be funded and maintained forever. Even if Pebble Limited Partnership is required to establish a bond to fund treatment, government solvency cannot be guaranteed over time spans necessary to treat wastewater from the open pit. Additionally, if costs to treat wastewater exceed the money available in the bond, then the burden to prevent contamination to the watershed will fall to taxpayers.

Page 8 of the executive summary also states,

“The bulk TSF would be closed by grading its surface so that all drainage would be directed off the TSF, and then the tailings surface would be covered with soil and/or rock and possibly a geomembrane or other synthetic material. This would prevent water from ponding on the TSF surface, and is known as a dry closure. Once this surface runoff from the bulk TSF is demonstrated to meet water quality criteria, it would be directly discharged to the environment.”

Since geomembranes have only been in use for 30 to 40 years, we lack adequate information on how they perform over the time span (essentially forever) necessary to keep the bulk tailings storage facility dry and prevent groundwater from leaching in or out. Simply covering it with soil, rock, and a synthetic membrane only delays groundwater contamination. It will not prevent it. The impacts of a degraded geomembrane leading to groundwater contamination are reasonably foreseeable but are currently unevaluated in the DEIS. The EIS needs to evaluate the impacts and timeline of a degraded geomembrane, not just presume that it will protect groundwater forever. It won’t.

Importantly, it is also completely unethical for a private corporation to create permanent hazards of this type. The mine has the potential to become another superfund site. If the Corps is to evaluate whether this project is in the public’s best interest, then it cannot ethically allow the creation of these hazards.

Scope of DEIS

The DEIS repeatedly presents information on best-case scenarios or merely states that something is “expected to happen” in an ideal way. For example, page 39 of the executive summary states,

“Water extraction activities would be required to meet the requirements of the Alaska Department of Natural Resources for temporary water use authorizations, and the Alaska Department of Fish and Game (ADF&G) for fish habitat permits (if issued). The rate and volume of water withdrawals would be monitored at each source to ensure permit requirements are met (as per permit stipulations). Therefore, the magnitude of the impacts to surface water resources is generally expected to result in changes in water quantity likely within the limits of historic and seasonal variation. The duration of the impacts is likely to be the life of the road, and the geographic extent of the impacts is likely to be relatively close to the road.”

Page 41 of the executive summary states,

“Overall, downstream impacts from pit lake level management during post-closure would not be expected.”

For another example, page 43 of the executive summary states,

“Under Action Alternative 1, impacts to water quality would generally be limited to the mine site area, within the zone of contact water capture and treatment, with potential minor exceptions of temperature and turbidity effects. Potential effects of contact and runoff water during construction of downstream water and sediment quality would be minimized through treatment prior to discharge, and would be expected to be minor.”

Statements such as these presuppose nothing will go wrong, ever, not with water treatment, not with the tailings storage areas, not with the fuel or the natural gas pipeline, not with the water extraction sites along the road. It downplays potentially significant risks. The DEIS does not adequately evaluate cumulative, foreseeable, long-term impacts.

Problems maintaining water quality can be expected over the life of the mine and are likely to increase after the mine is decommissioned. The mine will result in a net loss of spawning and rearing areas for salmon, and the habitat cannot be reclaimed. Throughout the DIES, the text downplays the ultimate impacts of the project. To gloss over impacts to the watershed in this manner represents a lack of due diligence on the part of Army Corps of Engineers and Pebble Limited Partnership.

Potential for Catastrophic Mine Impacts

While a credible worst-case spill from the mine, such as a tailings dam failure, is not likely in 20 years, if it were to occur the environmental effects would be devastating. The DEIS, again, neglects to include the possibility of unlikely–but foreseeable–catastrophic events. The agency’s review does not analyze a full breach of the tailings dams. It instead looks at a much smaller partial breach suggesting, “Action Alternative 1 and variants would not be expected to result in a longterm change in the health of the commercial fisheries in Bristol Bay or Cook Inlet.” (DEIS Executive Summary, page 54)

The potential for a tailings dam failure might have been calculated to be small (DEIS K4.15-16) over the near term, for example, but the risk cannot be eliminated and it will increase over time without additional mitigation measures. What is the likelihood of dam failure (large or small) over the next several hundred years? How would a catastrophic tailings dam failure impact the watershed, salmon, other wildlife, and the people who rely on Bristol Bay? This must be evaluated in the EIS. It is a reasonably foreseeable impact for this type of development since tailings dams fail frequently in the United States.

Impacts to Fish and Wildlife

The DEIS does not adequately evaluate the direct or otherwise foreseeable impacts on waters accessible to anadromous fish. As an example,

“The magnitude and extent of impacts, when compared to the total mileage of currently documented anadromous waters in the three tributaries associated with the mine site (i.e., the NFK, SFK, and the UTC), the loss of Tributary 1.19 habitat would represent 4 percent and 3 percent of spawning and rearing habitat for coho salmon, respectively; and 3 percent of Chinook salmon rearing habitat in these tributaries. In the context of the entire Bristol Bay drainage, with its 9,816 miles of currently documented anadromous waters, the loss of Tributary 1.19 represents an 0.08 percent reduction of documented anadromous stream habitat.” (Executive Summary, pg. 49)

Fish populations fluctuate significantly over many years and Pacific salmon utilize different habitats during different life stages. Some places in a creek are good for spawning but not rearing, for example. These habitats do not necessarily occur along a stream’s entire distance, nor do streams support salmon at the same rates consistently. Productivity within a watershed can fluctuate greatly over annual and decadal scales. As recent research1 on the Nushagak watershed demonstrated, entire landscapes stabilize biological production. Patterns of high and low production shift among locations throughout time. Simply acknowledging a stream supports anadromous fish does not adequately acknowledge the complexity of salmon habitat. Subsequent chapters in the DEIS do not present information on the type and relative importance of the habitat that will be lost. Therefore, the DEIS’ conclusions may not reflect the true importance of the stream miles impacted by the mine.

The quoted text is also written in a manner that minimizes the mine’s impact on fish (“In the context of the entire Bristol Bay drainage…the loss of Tributary 1.19 represents an 0.08 percent reduction of documented anadromous stream habitat.”). A more ecologically accurate measure would be to calculate this statistic as a percentage of the North Fork Koktuli River watershed. As I note above, not all anadromous streams are created equal. The North Fork Koktuli River watershed likely supports unique stocks of anadromous fish. Sacrificing .08% of Bristol Bay is not inconsequential and should not be written in a manner that suggests as much.

Regarding the transportation corridor, each of the DEIS alternatives are flawed due to the lack of information on the infrastructure impacts on fish and wildlife. For example, the DEIS does not address whether shipping across Lake Iliamna will impact harbor seals. The seals who live in Lake Iliamna are a unique population2. They live their entire lives in freshwater and have never experienced consistent shipping traffic on the scale proposed. The DEIS, therefore, needs to evaluate the impacts of shipping on wildlife in Lake Iliamna.

Water Extraction

At the mine and along the proposed transportation corridor, dozens of “water extraction sites” are proposed, pumping hundreds of millions of gallons of combined from surface features such as ponds, lakes, and streams (DEIS 2-58, 2-59, 2-96, 2-111). The pumping will continue year-round for the lifespan of the mine, and potentially longer as long as the infrastructure exists. However, I was unable to locate information in the DEIS on the impact of water extraction. Text on water extraction cites Appendix K2, which only includes a table about the estimated extraction rate per year.

There is no analysis of the impact of removing 500-1000 gallons per minute from dozens of surface water features. Are the streams identified for water extraction included in Alaska’s anadromous fish catalog? How will each stream react to that level of water removal? Flow rates in Bristol Bay streams vary greatly across seasons. Can the proposed extraction rates be maintained during years of drought or during winter when flow rates are low with no significant impact on aquatic habitat?

Each water feature is hydrologically unique and should be evaluated separately. A lack of evaluation on water extraction on fisheries and wildlife is a major flaw in the DEIS.

Long-term infrastructure use by communities

The DEIS states in several places that mine infrastructure will improve the quality of life for some communities.

“As described in Section 4.12, Transportation and Navigation, Alternative 1 would result in the construction of roads and ports. Although the road and port would have limited access, PLP has stated that they would work with all local communities to identify the best solutions for controlled-access use of the road and ferry for community transportation. Communities adjacent to the natural gas pipeline (Kokhanok, Newhalen, and Iliamna) would have the opportunity to connect to the pipeline. During operations, PLP would work with local communities to identify safe, practicable ways for residents to use the access roads, such as scheduled, escorted convoys for private vehicle transport.” (4.4)

“Communities adjacent to the natural gas pipeline (Kokhanok, Newhalen, and Iliamna) would have the opportunity to connect to the pipeline. Natural gas would likely be less expensive than diesel heating oil, which could lower the cost of living once equipment (e.g., furnace, water heater) is converted to natural gas” (4.4-5)

However, the DEIS repeatedly states that infrastructure will be abandoned or removed after 20 years.

“If no longer required at closure, the pipeline would be cleaned and either abandoned in place or removed, subject to state and federal regulatory review and approval at the decommissioning stage of the project. Surface utilities associated with the pipeline would be removed and reclaimed.” (Executive Summary, pg. 13)

Due to the high cost of living in the area, communities along the infrastructure corridor are likely to use the access road and the natural gas pipeline as soon as they are permitted to do so. These same communities wouldn’t want to give it up that access after 20 years. Therefore, the likely impacts of a natural gas pipeline and roads are not limited to 20 years. Impacts extend indefinitely. The DEIS should be revised so that it evaluates the impacts of a potentially permanent pipeline and road corridor.

Potential for Larger Mine

The DEIS is a rough evaluation of a mine with a 20-year lifespan, but that is one of the least likely development scenarios. If Pebble Mine is permitted to be developed, then it will open the door for an expanded and much larger mine that will operate for nearly 80 years as well as several other large-scale mineral prospects. The DEIS acknowledges this on page 4.1-8 when it states the Pebble Project Expansion is “reasonably foreseeable” and “would develop an additional 58% of mineral deposits”. The impacts of a much larger Pebble mine and a mining district in the headwaters of Bristol Bay are potentially exponentially greater compared to the mine proposed in the DEIS. This will cause irreparable harm to Bristol Bay’s fishery.

The potential for an expanded mine also increases the likelihood that the Pebble’s supporting infrastructure will remain in place indefinitely. The infrastructure is unlikely to be reclaimed as outlined in the DEIS. It will be used to service not only the larger Pebble Mine but others as well. This will lead to a cumulative degradation of salmon habitat, greater impacts to other species of wildlife, and greater risk for Bristol Bay’s fishing industry and culture. Although it’s not possible for the DEIS to evaluate the impacts of all foreseeable project expansions and other mines, the likelihood of this should at least be acknowledged more prominently, ideally in the executive summary. As currently written it is buried in Chapter 4 and easy to overlook.

In support of the No Action Alternative

Large scale development, especially open-pit mining, is incompatible with salmon habitat. We know this because large scale development has significantly degraded salmon runs and salmon habitat across much of the North Pacific and North Atlantic. Bristol Bay harbors the last great salmon run on Earth. If Pebble Mine is developed, then we will have acknowledged we have learned nothing from the collapse of salmon runs in New England, California, Oregon, or Washington.

The DEIS is largely based on Pebble Limited Partnership’s data. With so many flaws in the DEIS, it’s clear that the applicant’s plan is inadequate and has not met the burden of information necessary to justify their plans.

The cheapest, most feasible, and most environmentally ethical decision is to conclude this mine poses unacceptable risks to Bristol Bay—specifically the Nushagak and Kvichak watersheds—reject the mine alternatives, and choose the no action alternative for the final EIS. This is well within the Corps’ legal authority: “No Action Alternative could be selected if USACE determines during its Public Interest Review (33 CFR Part 320.4[A]) that it is in the best interest of the public, based on an evaluation of the probable impacts of the proposed activity and its intended use on the public interest.” (Ch. 2-8)

Although modern society uses rare earth minerals like gold and copper in many ways, civilization will not collapse if Pebble Mine is not developed. We won’t even be inconvenienced. If developed though, Pebble Mine represents the beginning of the end of Bristol Bay’s salmon. Mining impacts won’t cease after 20 years, and the hazards cannot be mitigated in perpetuity. The infrastructure is a beachhead for a larger scale Pebble Mine as well as many others in the region. The cumulative impacts of each mine will result in the net loss of larger and larger percentages of available anadromous fish habitat. On no metric does the value ore at Pebble exceed the value a healthy Bristol Bay watershed, its tens of millions of spawning salmon, and the economy and culture based on it.

There is no doubt the no action alternative is in the best interest to the public. We have so little to lose by leaving the ore at Pebble Mine in the ground and so much to gain by protecting it for current and future generations. The decision is clear.

The only acceptable alternative proposed in the DEIS is the no-action alternative. Do not permit this mine to be developed. If you do, it will become one of the greatest environmental tragedies of the 21st century, representative of our failure to do what is right by the land, the fish, and the people of Bristol Bay. It will become a monument to human greed and hubris.

Sincerely,
Michael Fitz
Concrete, WA
May 24, 2019

  1. Brennan, S. R., et al. Shifting habitat mosaics and fish production across river basins. Science. Vol. 364. Issue 6442. 24 May 2019
  2. Brennan, S. R., et al. Isotopes in teeth and a cryptic population of coastal freshwater seals. Conservation Biology. Accepted Author Manuscript. 2019. https://doi.org/10.1111/cobi.13303

 

 

 

A Plant with Teeth

My neck of the woods isn’t like the Chihuahuan Desert, where nearly everything that photosynthesizes seems like it evolved to grab, shred, tear, puncture, and stab you (just try an off trail hike at Carlsbad Caverns National Park if you want the experience and say hello to the lechuguilla while you do). Nor is my habitat like the poison-oak dominated slopes found in coastal California where a careless walk through brush can leave you itchy for weeks. No, not like that. Heck, I don’t even need to worry about ticks.

Along the Skagit River, devil’s club and a couple of species of invasive blackberry will stop you in your tracks with their numerous, stout thorns. Besides those few, the list of plants to avoid drops off fairly quickly, with a notable exception. One of the most ecologically interesting and menacing members of my plant community is a nondescript perennial that’s easy to ignore until it’s too late.

Lots of plants are fuzzy with fine hair. Some plants, like common mullein (Verbascum thapsus), utilize hairs on their leaves and stem like sunscreen and to make grazing just a little uncomfortable for herbivores. Some hair is just there, perhaps not serving a specific adaptive purpose, or not one that we know currently. But one plant in my forest, Urtica dioica or stinging nettle, has turned their hairs up to 11.

Nettle is rather inconspicuous. It has oppositely-arranged, coarsely-toothed, and heart shaped leaves. Its flowers grow in small, string-like clusters from the leaf axils and lack petals, typical for a wind pollinated plant, but what it lacks in showiness it makes up in its ability to inflict pain.

group of densely growing plants with toothed, heart-shaped leaves

Stinging Nettle (Urtica dioica)

I learned about stinging nettle as a young teenager scrambling up a creek bank in Pennsylvania. The bank was steep and muddy. I needed just a little extra support to prevent me from sliding down. Lacking a tree to hold, I grabbed a group of herbaceous stems and immediately realized I had made a mistake. I made it up the bank, but the palms of my hands burned for the rest of the day. I was just introduced to nettle’s defense against mammalian herbivores.

Stinging nettle is equipped with tiny, but potent, stinging hairs. On the plants in my area, the hairs are particularly concentrated on the stems, flowers, petioles, and leaf undersides. Each hair is tipped with a small, fragile bulb that breaks off when contacted to expose a needle-like tip that, hardened by calcium carbonate and silica, readily injects a cocktail of chemicals into your skin. The stinging sensation is immediate and long lasting.

close-up view of underside of stinging nettle leaf showing stinging hairs, petiole, and leaf veinsclose-up view of young stinging nettle stem with many stinging hairs

Among other chemicals, the juice inside a hair contains histamine, which is an inflammatory compound (we take antihistamines to inhibit the affects of allergic reactions), and serotonin, which constricts blood vessels and acts as a neurotransmitter. In sum, it is designed to irritate.

Why the need for this defense? Nettle leaves are nutritious and high in vitamins A and C as well as protein. They would likely be a sought after commodity by deer and other browsing mammals if it weren’t for their stinging hairs.

We can neutralize the sting by drying or steaming the leaves. Steamed, the leaves taste as mild as spinach and they make a decent pesto.

 

The rash you get from poison ivy is an accident of evolution. The oily liquid, urushiol, which causes the itchy dermatitis on us doesn’t affect other North American mammals or birds. Your dog won’t get it. Deer eat the leaves. Many bird species relish poison ivy fruits for food. The stinging hairs on nettles tell a different story. They are purposefully indiscriminate against all mammals.

Plants, like all life forms, experience a wide variety of limiting factors. Stinging nettle may have evolved one way to dissuade herbivorous mammals, but the same defense doesn’t deter insects or snails. The stinging hairs don’t work on parasitic fungus or microorganisms either, nor on anything that attacks and eats its perennial rhizome. But, its stinging hairs work, quite well in fact for their evolved purpose—discouraging mammals from eating it.

Despite the pain nettle can inflict, I look forward to seeing it sprout each spring. It gives me an opportunity to reflect upon why it needs to evoke such discomfort in mammals. Stinging nettle is a plant with teeth. It fights back.