The Origin of an Alpine Lake

Despite the area’s formidable topography, the North Cascades are filled with lakes. On a hike late last summer, I glimpsed how many of them formed.

Monogram Lake sits in a small basin perched a few thousand feet above Cascade River. At this elevation, just shy of 5,000 feet above sea level, it’s surrounded by blueberry meadows and scattered woodlands of mountain hemlock and Pacific silver fir. It’s an inviting place to camp for a couple of nights, no matter if you want to lounge by the lakeside or strengthen your quads further by climbing to the surrounding ridges.

small lake surrounded by meadows and mountains

I hiked there late last August hoping to watch black bears feeding on blueberries. The blueberries were reaching peak ripeness when I arrived, but I found no black bears or even any fresh bear sign, so instead of relaxing at the lake I decided to explore the surround terrain and take in some of the iconic alpine views that make the North Cascades so famous.

Not having a specific destination in mind, I was free to wander. These are my most favorite hikes, when I travel more to see what might lie in front of me instead fixating on a pre-determined destination.

Bushwhacking around the lake, I passed through quiet sedge-filled wetlands…

sedge meadow and small pond in mountain basin

…stopped frequently to eat blueberries…

blueberry plants with ripe blueberries

…wandered over a gently sloping boulder field…

meadow and boulder field looking up to a mountain ridge

…to a glacier tucked in a pocket just south of Little Devil Peak.

small, mostly snow free glacier tucked in a basin below a mountain peak

Here, I ate my lunch while contemplating the scene. It was a near perfect analog for the formation of the Monogram Lake basin.

Glaciers form when snow is compressed into mostly air-free ice and attains enough mass to deform and flow. Under the influences of gravity, ice deformation (high pressure within a glacier causes deeply buried ice to behave plastically), and lubrication from water at the its bed, glaciers move along the paths of least resistance. Due to their mass and size, they become powerful agents of erosion. They entrain rock, sand, and anything else as they flow. Forced along by moving ice, rocks at a glacier’s bed are especially erosive. Glacial erosion mills rock so effectively that much is pulverized into a microscopic powder called rock flour. This is the substance that gives glacial runoff it’s milky appearance and can color lakes turquoise.

Where ice had only recently receded at this particular glacier, the bedrock recorded plenty of evidence of the glacier’s past movement.

hiking pole lying on bare rock. Rock shows faint horizontal striations.

Many faint striations were scored into the bedrock near the glacier. The striations run roughly parallel to the hiking pole.

concentric gouges in metamorphic rock

Chatter marks are small, crescentic grooves formed in bedrock by rocks frozen in ice. The rocks chip the glacier’s bed as they are forced forward. The convex face of the marks point in the direction of movement.

Since glacial erosion is most pronounced at a glacier’s base, if topography forces ice through a pinch point then it causes the glacier to carve the underlying land more deeply and quickly than at the glacier’s sides, a process called overdeepening. As ice retreats, overdeepened basins often fill with water. This is the origin of fjords and deep lake basins as well as cirques high on mountainsides.

Monogram Lake occupies a cirque, a half open and steep-sided valley or basin on the side of a mountain. Instead of a clear lake surrounded by meadows, it was once filled with ice just like the basin below Little Devil Peak.

View looking toward a lake in a glacial cirque. Deep valley and snow covered peaks on horizon.

Monogram Lake

view of glacier in mountain basin. Snow covered mountains on horizon.

The glacier south of Little Devil Peak as seen from an unnamed peak above Monogram Lake.

Uniformitarianism is a geologic principle that, in sum, means the key to interpreting the past is to understand processes that occur today. Excluding the three hydroelectric reservoirs in the Skagit Valley, glaciers carved the basins for nearly every lake in North Cascades National Park and Lake Chelan National Recreation area. Even though I wasn’t around to see Monogram Lake emerge in the wake of glacial retreat, all the evidence I needed for this process was right before me.

Burpee Hill

Dry weather has been infrequent in western Washington this fall, so when a clear day dawned earlier this week I couldn’t resist the opportunity to take a wandering bike ride, one of my favorite pastimes. Over the last several years, my bicycle rides and hikes have become far more leisurely since I have become more prone to distraction. Without a fixed agenda though, I’m more open to discovery. Why, for example, would anyone pass on the chance to see a baby snake?

tiny snake in palm of gloved hand

This tiny garter snake was basking on the side of the road on a warm fall day in late October. Concerned it might become road kill, I moved it off of the pavement.

With temperatures near freezing on Monday, I wasn’t going to find any snakes, but over a fifty mile round trip—from Skagit River to the end of the road near Baker Lake—I found more than enough to hold my attention. After a mere two miles of pedaling, I found a reason to pause.

I began at the old concrete silos in Concrete, a small town along the middle reaches of Skagit River…

Concrete silos. Text on silos reads,

Why was Concrete named Concrete? You only get one guess.

Cycling route profile from Google Maps.

No, I didn’t ride the hill as slowly as Google Maps says it will take.

…and immediately began a steep climb up Burpee Hill. In two miles, the road gains over 800 feet of elevation, although I didn’t mind the opportunity to warm up with frost lingering on the grass.

The North Cascades region is the sum of a complex geologic history. Large-scale mountain building, volcanism, and extensive glaciation created and shaped a landscape of unparalleled ruggedness in the Lower 48 states. This area’s geology is, well, complicated. Just take a look at the geologic map.

screen shot of geologic map of Mount Baker and Baker Lake area

Yikes.

On a bicycle, unlike in a car, stopping to check out roadside curiosities—wildlife, road kill, trees, wildflowers, rocks, scenery—is very easy and is an important reason why I enjoy it so much. About half way up the Burpee Hill climb, I stopped to ponder some interesting sediments exposed in a road cut. The coarse to fine grained sediments were well sorted, indicating flowing water had deposited them, and were capped by a mix of unsorted rocks. This is one piece of a grander glacial puzzle.

view of road cut

A few exposures of loose and coarse sediment can be found on the Burpee Hill Road.

Maps that outline the last glacial maximum in North America give the impression that ice flowed largely north to south. While generally true, the story is a bit more complex on a local scale, as Burpee Hill illustrates.

Glaciers are masses of ice that flow and deform, and they behave differently than ice from your freezer. Set an ice cube on a table and strike it with a hammer and it will fracture. Ice in a glacier’s interior, however, is under tremendous pressure. Ice crystals are altered and deformed like plastic putty, so much so that only the upper 30 meters of temperate glaciers are brittle. (The relatively consistent maximum depth of crevasses reveals this fact. Below 30 meters, deforming ice seals any crevasses. Cavities at the base of glaciers have been measured to seal as fast as 25 centimeters per day.) The ice is not impervious to liquid water though. Within temperate glaciers, ice remains at or slightly above freezing, which allows meltwater to percolate to the glacier’s base. Pressure from overlying ice also causes some water to melt at the bed. Once there, meltwater acts as a lubricant helping the glacier slide. These factors, combined with gravity’s pull, drive glaciers along the paths of least resistance, and sometimes these paths lead uphill.

Between 19,000 and 18,000 years ago, a broad lobe of the cordilleran ice sheet invaded the lowlands of Puget Sound. Fingers of the ice sheet reached into the North Cascades as it continued to advance southward. Around 16,000 years ago, the ice sheet reached its maximum extent in western Washington, reaching south beyond Seattle, Tacoma, and Olympia.

On the margin of the ice sheet, lowland valleys like the Skagit offered ice easy passage as it advanced. About 18,000 years ago in the lower and middle reaches of the Skagit valley, ice flowed in the opposite direction of the modern Skagit River. Burpee Hill is largely the result of this process. It’s a 200 meter-thick layer of glacial outwash, glacial lake sediments, and glacial till deposited at the front of ice as it advanced up the Skagit valley. The features are clearer in a LIDAR image.

LIDAR Image

Burpee Hill is the wedge-shaped feature in the center of the image.

LIDAR image with labels. From left to right:

Glacial ice from the Puget Sound area flowed east over the current location of Concrete. The sediments that make Burpee Hill were deposited in front of the advancing ice.

Since its formation, erosion and landslides have eaten away at Burpee Hill, and it is easy to overlook when the lure of craggy peaks and snow-capped volcanoes always dangles ahead. If volcanoes and orogenies are architects of this landscape, then glaciers are certainly its sculptor, reshaping landforms in profound ways. Stories like this are tucked away everywhere. Landforms are rarely ordinary.

Epilogue:
I continued my ride, which (in case you’re wondering) was wonderful even though temperatures remained near freezing. As I expected it to be on week day in early December, the road was quiet. The views of Mount Baker, pockets of old growth forest, and Baker Lake were worth the effort.
view of snow capped volcano and creek valley