Time and Change Along the South Branch

There’s a walk I’ve been eager to follow since reading about it in A Guide to the Geology of Baxter State Park and Katahdin. So on a warm day in early September, I found myself meandering downstream along the South Branch of Trout Brook. 

I was fortunate to be there at that time of year. Water levels were low, which made for easy walking. Water temperatures were cool, which allowed my wet feet to buffer the heat of the day. Importantly, biting insects were few, which permitted me to enjoy the scenery without taking extraordinary measures to protect exposed skin.

A hike down the South Branch is intriguing because stream erosion exposes a series of rock formations that reveal a 400 million year-old story. In it we find the violence of long extinct volcanoes as well as the marvel of the first plants to colonize land on Earth. It is a story of immense time and change.

A calm portion of a stream surrounded by deciduous trees. The stream flows from lower left to center before disappearing around a bend.
South Branch Trout Brook in Baxter State Park.

Maine in the early Devonian Period, about 400 million years ago, would be wholly unrecognizable. The landmasses that would become Maine were located south of the equator. Extensive volcanism scalded the Katahdin region. Terrestrial vertebrates weren’t yet a thing. Dinosaurs were still about 150 million years into the future. Perhaps the oceans would be the only similarity we could recognize.

To explore this age of Earth’s past, I began at South Branch Falls which was empty of people when I arrived in mid-morning. It is an appealing swim spot with shoots and pools carved into Traveler Rhyolite, a rock formation created by ash fall and pyroclastic flows that may have filled a volcanic caldera about 407 million years ago.

A stream flows through a narrow chute carved into bedrock. The stream flows from center to bottom right. Deciduous trees and some white pines overtop the stream and trees.
South Branch Falls. The rock is composed of a type of rhyolite known as welded tuff.
Close up photo of rock. The rock is gray and includes light gray inclusions of flattened pumice. The scale at bottom measures about 6 inches.
An example of welded tuff from Peak of the Ridges to the south of the South Branch. While this photo was taken a few miles from South Branch Falls, the rocks formed in the same manner. Ash and pumice from volcanic eruptions were heated and compressed, which deformed and stretched clasts of pumice within it. Instead of loose ash and pumice, it was welded together by heat and pressure.

In contrast, nearby Katahdin, Maine’s tallest peak, in the southern portion of Baxter State Park is composed of granites. 

View of boulder field and alpine vegetation (mostly small sedges tucked between the rocks) looking toward a taller mountain peak in the background.
Mount Katahdin as seen from the North Peaks Trail in Baxter State Park.

Despite their differences in appearance and texture, rhyolite and granite are chemical equivalents. Both are formed from silica-rich magma. The difference is a product of time and location. Rhyolite is a volcanic rock formed from viscous lava. Because of its high viscosity it tends to erupt explosively—think Plinian type eruptions such as Krakatoa in 1883. Granite, though, forms underground when silica-rich magma is given the opportunity to crystalize over millions of years. According to the aforementioned Guide to the Geology of Baxter State Park and Katahdin, mineralogical analysis confirms the relatedness of the Katahdin Granite and the Traveler Rhyolite. They both date to about the same age too, although the rhyolite must be younger since it rests on top of the granite and there’s no evidence that the granite intruded into the rhyolite. Katahdin’s granite, therefore, is the solidified core of a magma chamber that fed the eruptions resulting in the Traveler Rhyolite.

The nearest modern analog to the Traveler Rhyolite that I have seen is the pyroclastic flows of the Valley of Ten Thousand Smokes in Katmai National Park, but that was result of a single, 60-hour eruption. While Traveler Rhyolite is not a widespread rock formation currently it may have once covered a much more extensive area. It is also voluminous where it remains, perhaps accumulating to a total depth of 10,000 feet (3,000 meters) from the successive accumulations of an unknown number of eruptions. The enormity of the eruptions that created the Traveler Rhyolite is difficult to imagine. The serenity of a quiet morning at South Branch Falls fails to capture the violence of the events that created the bedrock here.

Stream flowing over a small waterfall then through a wider pool. Water flows from center at the waterfall to lower right. Bedrock surrounds the lower portion of the stream, while forest frames it from above.
South Branch Falls.

I left the falls to walk downstream before anyone arrived to wonder why I was putting my face so close to the bedrock (I’m not much of a conversationalist when out in public) but not before stopping slightly downstream to watch fish…

GIF of small fish in a stream. Most of the fish are a few centimeters long and have a dark stripe from head to tail on their side.

…and to identify a species of willow I had not seen before.

Close up photo of willow leaves. The leaves are arranged alternately on the stem and taper to a long, sharp point.
Summer foliage of shining willow, Salix lucida.

Much of the rock in Maine has been subject to deformation by plate tectonics and mountain building processes. Occurring between the Late Silurian and Devonian, the Acadian Orogeny saw the convergence of crustal terranes (essentially fragments of crustal plates with different geologic histories) as well as the creation of volcanic arcs and the folding metamorphism that accompanies tectonic collisions. Part of modern Maine and Atlantic Canada belongs to Avalonia, a crustal terrane that is also found in Europe from Ireland to Poland. Still more bedrock was formed under the Iapetus Ocean, an ancestral Atlantic that closed in the Paleozoic. Imagine the mess of geology which would be created by the collision of Sumatra, New Guinea, and Borneo into mainland southeast Asia by future tectonic movement. Something like that happened in the area we now call the Northeast U.S. and Atlantic Canada about 400 million years ago. The geology, as you can infer, gets complicated quickly. 

So owing to the forces formerly at work here, it is uncommon to find unaltered sedimentary rocks in this neighborhood. They are usually tilted, folded, and baked. Yet, only few hundred meters downstream of the South Branch falls the bedrock changed and we’re provided with a rare example to the contrary.

The Gifford Conglomerate is a section of the larger Trout Valley Formation, a collection of younger, Devonian-aged sedimentary rocks overtopping the Traveler Rhyolite. This is reportedly one of the few places in Maine where sedimentary rocks formed post Acadian Orogeny and haven’t been extensively altered even though they did experience some metamorphic change. With its rusty cliffs and shallow grottos, this section of stream was also particularly beautiful. 

Stream flows past a wall of rock. The rock is rusty in color and composed of cobbles that are cemented together. A series of grottos are enclosed in the rock at stream level. The water flows from bottom left to
This wall of cobbles are eroded pieces of Traveler Rhyolite in a deposit known as the Gifford Conglomerate. It was emplaced during the waning epochs of the Acadian Orogeny. It’s also not found anywhere else, which suggests this spot could have once been an alluvial fan at the base of a canyon or valley on the side of a volcano.

As I continued downstream, the conglomerate disappeared under rocks with a finer consistency. As these sediments accumulated the plants growing among them seized a revolutionary opportunity.

Steam flowing past a wall of gray rock. The rock wall is at left. The stream flows from lower right to center right.
An exposure of the Trout Valley Formation along the South Branch. Younger portions of the Trout Valley Formation do not include cobbles of rhyolite like the Gifford Conglomerate. In fact, the rock is composed of progressively finer sediments the higher one looks in the formation. Sandstones, shales, siltstones are common.

The Trout Valley Formation contains some of Earth’s oldest terrestrial plant fossils. At first, finding the fossils was a challenge. I wasn’t sure exactly where to look, but once I developed an eye for them then they popped into view.

A rock containing a branched fossil stem of a plant. The rock with the fossil is wet and sits on a rusty colored dry rock. The scale at bottom measures about 10

Forests of the late Devonian included tree-sized plants, but that was still several million years into the future. The plants found in the Trout Valley Formation had only just begun the colonization of dry land and they remained small in stature. One Psilophyton species reached a foot or two (a few decimeters) in height. Another Psilophyton had dainty 3 millimeter-wide stems. Kaulangiophyton akantha (don’t ask me how to pronounce that) had almost centimeter-wide stems with irregularly spaced spines. Pertica quadrifaria is the tallest known plant of its time. It grew to be about 10 feet (~3 meters) tall with stems about 0.6 inches (1.5 cm) in diameter. They were perhaps fragile as well. Their fossils are often highly fragmented.

An in situ rock with a plant fossil. The rock is dark gray. The fossil is branched and rusty in color. The scale at left measures about 10 centimeters.

Sidenote: I hesitated to include any mention of fossils because certain people are dicks and steal them. But I chose to include them anyway because they are frequently mentioned in the published book I used to guide me. The state park also has a publication noting some fossil locations online. Athough collecting is prohibited in Baxter State Park, there is still a risk someone will read this and steal fossils. Please don’t be that guy. Leave the fossils where they are for others to enjoy and study.

So here are 400 million year-old plant fossils comprising few to several species found in finely grained sediments. What might this tell us about the habitat they lived in? The authors of one of the first papers to formally describe the fossils, published in 1977, stated, “The number of plants found at a single site is very small, usually only one species, occasionally two or three at most. There seems to be a valid comparison with present-day marshland vegetation along the New England coast where the number of species is relatively small over much of the area with scattered peripheral patches of other species that occupy smaller niches in the landscape.” When I read that I immediately thought, “Hmm…sounds like a salt marsh.”

Salt marsh grass with dry, browning stems are bordered by channels of mud on left and right. A line of trees
A salt marsh near Charleston, South Carolina.

Salt marshes are harsh environments for plants. For most species, it is an uninhabitable space. Vegetation must be able to survive flooding by tides, oxygen-poor soils, and high salinity. But for the plants that possess the physiological adaptations to cope with the challenges, the salt marsh becomes a richly productive environment. 

On the east coast of the United States, salt marshes exist in the wetland transition zone between the sea and land. Salt marsh or smooth cordgrass (Spartina alterniflora) dominates the low marsh, the area flooded by tides each day. It grows in sand, clays, and mud. It can tolerate salinities that are double that of sea water by excluding salts from entering its roots, sequestering of sodium in its tissues, and secreting excess salt through its leaves. It counters a lack of oxygen in the soil with stems and roots connected through air pockets. No other plant in its native range copes as well with the salt, flooding, and disturbances that cordgrass experiences.

While smooth cordgrass dominates the low marsh, salt meadow hay (Spartina patens) outcompetes it in places above the average high tide line. Salicornia, a tasty edible, finds space in salt pans where conditions can be too harsh for even the Spartina grasses. When I learned to recognize the dominant plants of salt marshes while working at Assateague Island, I could use that information to note at a glance the approximate average high tide and the driest, saltiest places in the marshes. In east coast salt marshes, the few thriving species grow in habitats that differ in salinity and tide exposure. 

A grassy meadow in front of a mud flat. Trees form the horizon at center.
A meadow of Spartina grasses in Pembroke, Maine. The cow-licked grasses are Spartina patens (i.e. salt meadow hay) that live in the high marsh. Just to the left of the S. patens is a border of S. alterniflora (i.e. smooth cordgrass) that marks the low marsh.

Might the first plants that took to the land in the Devonian have created habitats that resembled salt marshes? I do not possess the ability, imagination, or knowledge to adequately envision those environments. But that won’t stop me from trying. There were no grasses or flowering plants or even seed-bearing plants in the Devonian so the scene was different. Even so, perhaps a series of extensive mudflats and braided streams flowed into the sea on the edge of an eroding volcano. Maybe some of the now fossilized species were best adapted for habitats closer to fresh water. Others could have preferred spaces inundated by tides. Disturbance and competition may have partitioned them into habitats perfect for some and harsh for others.

Rock containing plant fossils. The fossils are roughly parallel in the rock and trend horizontally in the photo. The rock with the fossils rests on other rocks. The scale at bottom is about 9 centimeters.

After continuing downstream where most of the Trout Valley Formation became hidden under a veneer of glacial till and not far from the South Branch’s confluence with the main stem of Trout Brook, I paused to admire a large sugar maple. 

A large sugar maple stands at center of the photo. It is surrounded by other smaller statured trees in a dense forest.
A beauty of a sugar maple along the lower reaches of the South Branch.

Perhaps 75 feet tall, its broad crown of leaves included the first hints of fall color. The tree was a fine representative of its species. A world without sugar maples would be a poor one, I think, and the humble fossils I examined upstream represent a beachhead for land plants to eventually become beings as magnificent as maples. In the Devonian, terrestrial plants began to stabilize landscapes from erosion, create soils rich in nutrients, and provide food for arthropods and vertebrates. It might’ve been the first time in Earth’s history when an organism with my oxygen needs could have breathed the air and survived.

Each fossil I found was a plant that grew for months or years. It died during a specific point in time at specific place. In contrast to the collective millions of years preserved in the rocks and the hundreds of millions of years of evolution represented by the maple tree and me, each fossil represents single moments of life and death. They are, paradoxically, the past and the present and the future. 

Although this is an ancient story, I’m not sure “ancient” is an appropriate adjective for it. In my mind, the word implies a connection to human antiquity, while this story of change is a chapter of Deep Time. It is part of the arc of Earth history before humanity’s evolved ability to conceive of it. We can, though, draw a metaphoric line between the volcanoes that once blanketed the area under thousands of feet of ash to the plants which grew in tidal marshes to the forests that now bath my lunges in oxygen. I might live in a different world, but my existence remains rooted in the events preserved in these rocks.

A Turd of a Time

While every season has much to admire, I find springtime especially enthralling. Something new appears nearly every day. At first, maple sap runs heavy during March’s warm days and sub-freezing nights. Around then, a trickle of meltwater in a ditch and a bare patch of matted leaves on the edge of a snow bank promise room for other plants to break dormancy. Soon after, the first golden catkins appear on the hazelnut and gray alder. Rainy evenings bring amphibians out of hibernation. In a short time, the soon-to-flower ephemeral herbs emerge from the crust of leaves. By late April and early May, the forest canopy bursts to life again with bird song, the blossoms of red maple and quaking aspen, and finally the unfurling of leaves that will soon thoroughly shade the ground where I trod.

Each of these are little events that promise a lot more. I’m unsure if non-human animals contemplate these changes like I do. Yet, I’m certain they pay attention to them. Black bears, recently emerged from their dens, know the pattern and are eager to exploit the change of the season to their advantage. If I’m lucky, their efforts to find their first substantial meals of the year might allow me to investigate what they are up to.

A section of Katahdin Woods and Waters National Monument sits to the east of Sebois River. It’s a quiet area of the park since there are no campsites, less than a mile of developed hiking trails, and only a few maintained roads. Bicycling through it is fun and is made even more enjoyable when I afford myself the time to go slow and pay attention. It’s one of the best places in park that I’ve yet found to look for bear sign in the spring.

Riding the single lane spur that loops off and back to American Thread Road last weekend I came across many piles of bear scat, which I was hoping to see. Not because I particularly admire turds, but because bears are cryptic here. They are frequently hunted throughout northern Maine and consequently have a substantial fear of people. The thick forest also limits my ability to watch a bear if I happen to see one. The signs that bears leave behind—such as marking trees and scat—are like pages in a book. A single page may not reveal much but look at enough pages and you’ll get a good story

A large pile of dark colored, almost black, bear scat on gravel. The bear scat is framed by grass blades and wild strawberry leaves. The background is open forest.

In particular, scat can reveal how recently a bear was in the vicinity and what it was eating. Black bears are omnivores that are well adapted to survive on plants, and the vast majority of their annual calories come from plant foods. In north-central Maine, though, there are no calorie-rich berries to eat in the spring. Perhaps there are some leftover acorns, but oak trees are not common in the forests as this area is near the northern end of their range in the northeastern U.S. So other plant foods are a bear’s best springtime bet.

While a black bear’s digestive track remains essentially one of a carnivore, it utilizes adaptations such as an elongated gut and slightly flattened molars to extract nutrition from tough to digest plant foods. A bear also consumes plants when they are most nutritious and digestible. Newly emerged green vegetation like grass, sedge, and clover contains relatively high amounts of protein, for example. As those plants mature, protein content declines while indigestible fiber increases. Fiber helps keep the bear on a so-called regular schedule, but the bear is really after the protein. Even though hibernating bears maintain their muscle health without eating or exercise, if they’ve exhausted their fat reserves by springtime then their body is forced to tap into their lean tissue reserves. Young, tender veg helps bears stave off muscle loss and even build muscle before sugary, fat-building foods become available in mid to late summer.

All but one of the scat piles I found were filled with herbaceous plants. Although most looked older than a day–when bears eat green veg, the resulting scat quickly oxidizes when exposed to air to form a black surface crust–this was a promising sign. I knew that the lightly used roads are good travel corridors for bears and the sunlight reaching the road edges allows vegetation to green-up more quickly than the forest interior, which attracts bears to the roadsides. Perhaps I might see a bear if I pedaled slowly and remained observant.

The effort paid off near the crest of a hill when I spotted a dark mass of animal on the edge of the road. I stopped to watch.

The wind was at my back, which is a welcome push when cycling uphill but also carried my scent to the bear. Once it caught my scent, the bear only needed a couple of seconds to decide to run into the forest. Had the wind been blowing the other way, I probably could’ve watched it much longer with less chance of disturbing it unintentionally. Still, I was grateful for the moment and the small insights into its world.

Before widespread logging and, later, roadbuilding encroached on the area’s forests, grassy areas in northern Maine were likely much less common than today. Black bears always sought the first spring greens, but they had to look in other places—riverbanks, stream sides, and beaver meadows for example. They continue to go to those areas, of course, even as roadsides have opened another foraging opportunity. Roads are risky places that expose bears to people though. Bears weigh the risk along with the potential reward of a good meal.

I knew the bear I saw was eating well even as it still had a long way to go until it was fat enough to enter its winter den next fall. Its effort is a journey recorded in its scat—pages, if you will, in the Book of Turds.

Little Bog of Horrors

I find the urge to explore bogs and boggy habitats difficult to resist. Other people avoid them, which gives me space to be alone. They’re mucky, which is often a fun and challenging substrate underfoot. They contain unique species, which I find fascinating. They are full of life. And they offer surprises.

On an unseasonably warm late October day, I found myself poking around the edges of Little Messer Pond, an approximately 27-acre pond in Katahdin Woods and Waters National Monument, Maine.

Photo of pond and surrounding vegetation. Pond is at lower right. Short shrubs and sedge at lower left. Pines, spruce, and large line pond.
Little Messer Pond
Photo of pond. Trees line the pond in the middle and background. Short shrubs form the pond's border in the foreground.
Little Messer Pond

While exploring the pond’s northern flank, on a shelf of sphagnum peat that cups the pond’s shore, I found several purple pitcher plants (Sarracenia purpurea), one of the most iconic bog species in this area. The purple pitcher lives an uncommon, carnivorous lifestyle for a photosynthesizing organism. Pitcher plants supplement their growth by capturing small animal prey, typically insects. Unlike Venus fly-traps, however, which ensnare prey using a trigger-like mechanism, pitcher plants use a passive, gravity-driven process. Their leaves form bell or cone-shaped bowls that fill with rainwater. The top of the each leaf has a flaring lip lined with nectar glands to attract insects. If a hapless insect falls inside, downward pointing hairs resist its escape attempts. 

Several pitcher plants growing out of reddish-colored sphagnum moss.
Purple Pitcher Plant

Pitcher plants can’t move, so they have unsurprisingly indiscriminate tastes. To cite just one example, a study from Newfoundland documented 12 insect orders serving as prey in pitcher plants. Prey eventually drowns in the pitcher’s water where enzymes as well as inquilines (microorganisms adapted to live in the pitchers such as midge larvae, nematodes, bacteria, protozoa, and rotifers among others) break down the trapped prey, releasing nitrogen and phosphorus for the plant. Purple pitcher plants, in particular, seem to be particularly rich in inquilines, hosting at least 165 different species across its range. Pitchers are habitats of their own making and their adaptations allow them to live in nutrient poor soils where competition from tall plants in minimal.

Looking at the pitchers on the edge of Little Messer, I found ants, beetles, flies, dragonflies, various bits of unidentified insects, and a sludge of the leftovers in their bowls.

They’d eat me if I were small enough. 

GIF from Little Shop of Horrors. Plant says "Feed Me!" while Seymour looks at it.

None of the prey was unusual or unexpected until I stumbled upon a curious sight—a spotted salamander inside a pitcher.

Spotted salamander floating in a pitcher plant's bowl.

I was taken aback by the sight. I had never seen something like this before, and I remember exclaiming “What the?” even though I was alone. Was this a big payday for the plant or was the salamander only a temporary resident?

Small vertebrates are exceedingly scarce as a prey item for purple pitcher plants. In the scientific literature, I couldn’t find much documentation of it. A study from Massachusetts documented red-spotted newts as a food source for pitcher plants. A more recent study from an Ontario bog found that spotted salamanders are a potentially rich prey for pitcher plants. (One of the researchers leading that study described his sighting of a salamander in a pitcher plant felt like a “WTF moment” so I guess I wasn’t alone in my surprise.) In August 2017, researchers at that study site searched the contents of 144 pitcher plants. They found, as expected, mostly insects but also several recently metamorphosed spotted salamanders. In August 2018, they investigated 58 plants and found three spotted salamanders. The physical condition of the salamanders varied. Some were in an advanced state of decay while others were lively and were able to swim to the bottom of the pitcher when disturbed.

Plenty of uncertainty surrounds pitcher plants and the importance of small vertebrate prey to them like salamanders and newts. No one has yet tested what might attract a salamander into a pitcher since a salamander has to climb up to get into one. If the salamander can escape, then pitchers could be a refuge for salamanders who have recently emerged from the water onto the land. Perhaps salamanders are attracted to the pitcher by small insects visiting to feed on the plant’s nectaries. Their apparent capture could be random too, although, dead salamanders apparently break down quickly inside pitcher plants so maybe their true rate of capture is greater than anyone realizes.

I wonder if it might happen only in places with the right combination of habitats. Purple pitcher plants typically (but not exclusively) grow in nutrient poor bogs, places that don’t always support breeding populations of spotted salamanders. Adult spotted salamanders migrate en masse during spring to vernal pools where they breed. They may also use permanent ponds for reproduction as long as those don’t contain fish, which eat salamander eggs and larval salamanders. Newts, in contrast, breed in a greater variety of wetlands including ponds and lakes that contain fish. 

At the Ontario study site, pitcher plants grow on bog islands in permanent and fish free ponds where spotted salamanders gather to breed every spring. This seems to provide a combination of habitats that increase the likelihood of pitcher plants capturing salamanders later in the year when the juvenile salamanders metamorphose and begin their terrestrial lives. Little Messer Pond, in contrast, is home to fish, snapping turtles, and presumably other salamander predators.

A salamander or newt, even a juvenile, is a significant catch for a pitcher plant. A newt of about 500 mg of dry mass contains about 5 mg of nitrogen, which is several orders of magnitude more than an ant, a pitcher’s most common prey. That’s enough nitrogen to increase the probability of the plant flowering the next summer. If the salamander I saw had indeed perished in the pitcher, maybe it’ll dignified in death by a marvelous pitcher plant flower next summer.

Pitcher plant flower. Petals are fleshy. Flower is radially symmetrical.
In my area, purple pitcher plants flowers appear in early summer.

Pitcher plants are wonderfully adapted to secure nutrients and survive in habitats that most plants cannot tolerate. If they’re lucky enough to capture something as large and nutrient rich as a salamander, then their physical structure can hinder escape. Their acidic water (often lower than pH 4 by mid summer) can weaken salamanders through electrolyte imbalance. And, the water within them might contain compounds that inebriate or paralyze small prey. 

The fate of the salamander that I found remains unknown. I returned a week later with the intention of relocating it, but I could not find it despite my best efforts. Although I can’t be sure, I think it is unlikely that I missed it since the boggy area with the pitcher plants isn’t large and the pitchers are easy to locate. If it were still alive, perhaps it fled to the bottom of the pitcher upon my approach. However, if it were still in the pitcher after seven days, then it should’ve been dead. Did it escape the trap that so many other victims of pitcher plants could not? I wish I knew the end of this story—a drama of uncertainty, survival, life, and death.

A Most Impressive Bog

Some people who know me well poke fun at my penchant for exploring mucky places. At one national park where I worked as a ranger, it took a few years of turnover among the seasonal staff before their friendly prodding about a short lecture I once gave on the differences between bogs, fens, and muskegs died away.

I suppose my fascination with wetlands began on camping trips when I was young (probably no older than eight or nine years). In those good ol’ days of the 1980s my cousins, me, and any temporary campground friends we found spent hours alone exploring a “swamp.” It was little more than a shallow, cattail-filled ditch at the end of one of the state park campground’s cul-de-sacs, but armed with dip nets, fishing nets, and plastic buckets, we pulled more than a few frogs, tadpoles, and crayfish out of it, and sometimes a leech or two off of us.

Although I couldn’t articulate it at the time, I now understand that I was drawn to that place because it seemed so alive. I’ve never outgrown the urge to slog into habitats where I feel like other life forms envelope my whole being. A trial-and-error bushwhack is a small burden to pay so that I can experience that feeling again, which is how I found myself shoving through tangles of spruce and larch last June.

In a broad lowland a few miles south of Patten, Maine lives a most impressive bog. The difficulties I experienced getting into the bog were far surpassed by the beauty one experiences in a rarely trammeled landscape. Crystal Bog is the most spectacular bog I’ve ever seen.

Photo of peat bog with pond at center left, yellow-colored sphagnum moss at center, and red-colored sphagnum at right. Horizon is lined by sparse conifer trees.
Google Earth image of Crystal Bog area. Scale at lower right marks 3000 feet.

Getting into Crystal Bog (also known as the Thousand-Acre Bog) is not an easy task—a fact I discovered when I first explored it in 2020. No trails enter the bog proper, and the adjacent ATV trails only skirt the extensive swampy thickets that surround it. Choosing the wrong route is easy in such habitat, especially on overcast days when clouds obscure the sun and any hint of which direction might be north or south.

I don’t carry a GPS device or a smart phone, so I navigate via compass when vegetation is too thick and landmarks too obscure to provide orientation. During my attempt to access Crystal Bog in 2020 I rode my bicycle a little too far on the ATV trail that cups the north side of the wetland, started south at the wrong place, didn’t utilize my compass often enough, and bushwhacked much farther than expected or necessary. With those lessons learned, however, I felt better prepared to avoid the thickest muskeg and swampiest areas to reach the open bog more easily.

I locked Rocinante to a sturdy tree once I located a good starting point…

photo of bicycle leaning against a tree in dense vegetation

…and set off through the trees.

thick forest with ferns, shrubs, and tall trees filling the entire frame

Crystal Bog is part of a large wetland complex. On every side of it, streams meander through forested swamps and sedge-filled fens. The sphagnum peat lands at the center of this complex was my destination, though.

After 20 minutes of travel (a remarkably short time span compared to the two hours of bushwhacking I needed the previous year), the forest began to transition into a more open woodland. Sphagnum moss and low-growing ericaceous shrubs became common and spindly black spruce and eastern larch were the only trees.

open forest with tall conifers and thick, low shrubs in understory

Shortly after, I reached the open expanses of the bog proper.

bog with widely scattered small trees

As I moved from swamp to muskeg to sphagnum bog, I moved progressively into harsher habitats, at least from a botanical perspective.

Bogs are a type of peat-land that generally get water from aerial precipitation rather than flowing surface or ground water. Sphagnum thrives here. The tannins and acids released by sphagnum lower soil pH to levels inhospitable for most plants. While a bog’s edges might be richer in minerals and productivity due to ground or surface water flow, the sphagnum-dominated areas in and around its center offer very different conditions. The pH at Orono Bog near Bangor, for example, progresses from 6.6 (a pH you find in milk) at the forested edge to 3.8 (a pH approaching that of grapefruit juice) at its sphagnum-dominated center. Since the pH scale is logarithmic, rather than linear, this difference represents almost a 1,000-fold change in acidity.

close up view of deep red sphagnum moss

Sphagnum moss

As more sphagnum grows on the surface, it buries and compacts previous generations to form peat. Decomposition is also hindered by the low oxygen conditions found in the bog’s supersaturated soils. But, sphagnum is really good at growing on top of itself. In this manner, sphagnum begets sphagnum. Under the right climatic conditions, sphagnum bogs can sustain themselves for thousands of years and peat accumulations can grow many meters thick. Peat also preserves a botanical record of the plants that lived in the bog and the pollen that settled on it, a paleontological record on present and extinct animals that died within them, and even an archeological record of the people who utilized these places.

On top of this wealth of partial decay exists a living veneer. Minute gradations in topography and drainage create micro-habitats for the plants that are adapted to the bog’s stressful conditions. The higher above the bog’s water table, the more oxygen can diffuse into the soil and the more O2 is available for plant roots that need oxygen. Relatively few plant species survive in bogs compared to nearby forests. Yet those that do are often abundant.

Larch and black spruce in bogs receive ample sunlight, have access to plenty of water, and experience little competition from other tall plants, but the peat enveloping their root systems offers little to sustain their growth. Small-statured trees in a bog may be many decades old, while growing little more than the height of an average adult person. At the Orono Bog, some 7-foot tall spruce trees were found to be about 100 years old. (FWIW a tree, I think, cares not for its appearance, only its ability to reproduce.)

island of small-statured black spruce surrounded by dwarf bog plants

These small-statured black spruce (Picea mariana) may be many decades old.

Ericaecous shrubs such as Labrador tea, bog rosemary, and laurels survive in bogs only where their shallow roots remain perched above the flooded peats and sphagnum. Yet, although bogs are classified as wetlands, summertime drought can cause drastic lowering of the water table. The thick, leathery leaves of these plants might help them retain moisture under those conditions.

flowers of Labrador tea. Flowers are white and clustered at the top of the stem.

Labrador tea (Rhododendron groenlandicum)

flowers of sheep laurel. Pink flowers are clustered at a node in the stem.

Sheep laurel (Kalmia angustifolia)

Orchids tap mycorrhizal fungi to overcome the lack of nutrients, a trick utilized by the ericaceous plants as well.

flower of grass pink. Flower is pink and bilateral in symmetry. The lower lobes are bright pink.

Grass pink (Calopogon tuberosus)

Other bog plants evolved means to capture nutrients from animals. Bladderworts capture prey in small sacs attached to their thread-like underwater leaves. When a tiny zooplankton contacts sensitive hairs on the outside of the bladder, it triggers the bladder to inflate. The sudden action sucks in water and the hapless prey. The plant then absorbs its nutrients.

bladderwort flower. Single yellow flower at top of thin stem.

Bladderwort (Utricularia sp.)

Sundews ensnare small insects using sticky secretions on the ends of glandular hairs on their leaves. An insect alights on the leaf and becomes stuck. The hairs and the leaf margins then slowly fold over and envelope the insect. The leaf hairs also release an anesthetic to stupefy the prey as well as enzymes to dissolve its soft tissues.

Round-leaved sundew (Drosera rotundifolia). An unlucky insect is trapped on the leaf in the right photo.

Pitcher plants use specialized leaves to create a basin of water. Insects that fall into the basin, aided by downward pointing hairs on the inside of the leaf’s rim and numbing secretions, are slowly decomposed by bacteria and possibly plant enzymes that live in the water. Specialized cells at the bottom of the pitcher absorb the insects nitrogen and other nutrients.

Pitcher plant (Sarracenia purpurea)

I paused often as I wandered through the bog to marvel at the tenacity and beauty of the life around me. I also marveled at the lack of a human presence. The ability to experience a landscape that wasn’t overtly altered by people was a special treat, even in one of the least populated U.S. states.

Maine is lushly vegetated. Forest covers a greater percentage of its land than any other state. That forest, though, is heavily manipulated by people—by a timber industry that often harvests trees before they reach age 50, by a warming climate, by tens of thousands of miles of roads, and by invasive species. But human-caused changes are not limited to the land. Off the coast, the Gulf of Maine is one of the fastest warming bodies of water in the world. There is virtually no Atlantic cod fishery because cod haven’t recovered from the devastation of overfishing in the 20th century. Ditto for Atlantic salmon, which hang on by a thread. Places where evidence of humanity’s heavy hand is absent or at least minimized are difficult to find even in parks such as Acadia, Baxter, and Katahdin Woods and Waters.

Bogs are often overlooked at best or viewed as wastelands to be “reclaimed” for agriculture or mined for peat at worst, but they rank among the worlds most important habitats, especially when we consider their ability to capture and sequester atmospheric carbon. Like old-growth forests, peat is a non-renewable resource since we humans lack the patience and self-restraint to harvest it at sustainable levels (please buy peat-free soil products for this reason).

While the area surrounding Crystal Bog is full of roads, early successional timberland, potato fields, homes, and small towns, this bog remains remarkably unmarred. It is one of the few places in modern day Maine that would be recognizable to a Wabanaki traveler from the 15th century. In the middle of Crystal Bog, it’s easy to let your mind drift to a place where the world is well. This is an illusion, I realize, but one we all must escape into every once in a while.

bog landscape. Small pond sits at upper right. Yellow and red sphagnum moss are at center and left.